ANNEX B. EPIC DATABASE "RADIATION EFFECTS ON AQUATIC ORGANISMS" (RUSSIAN/FSU DATA) RADIATION EFFECTS ON AQUATIC ORGANISMS (RELEVANT TO NORTHERN AREAS, RUSSIAN DATA), CHRONIC AND ACUTE EXPOSURE. Effect codes: NE-no effect; REPR-effect on reproduction; MT-effect on mortality; MB-effect on morbidity; AD-adaptation to radiation; STIM- stimulation. (*) -preliminary dose estimates made by the authors of the database. | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|---|---------------------|---------------------|---|----------------|--| | A1-1 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria. Exposure 15 days | Sr-90 | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m)(*) | 3,3E-05
(kidney) | 2,0E-04
(kidney) | Phagocytic response of leucocytes on infection did not differ from the response in the control.Control response: maximum number of fagocyting leucocytes was 28% 1.5 hours after infection. | NE | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova, 1983 | | A1-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria. Exposure 30 days | Sr-90 | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m) (*) | 8,0E-05
(kidney) | 1,2E-3
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 17% one hour after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova, 1983 | | A1-3 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium
experiment,
chronic
exposure from
Sr-90. Test: | Sr-90 | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m) (*) | 8,9E-4
(kidney) | 4,2E-02
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 17-18% during the 2nd hour after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|---|---------------------|---------------------|--|----------------|---| | | | | phagocytic
activity of
leucocytes on
experimental
infection with
bacteria
Aeromonas
punctata.
Radiation
exposure 90
days | | | | | | | | Shekhanova,1983 | | A1-4 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria Aeromonas punctata. Radiation exposure 180 days | Sr-90 | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m) (*) | 6,9E-4
(kidney) | 0,2
(kidney) | The response on infection was more active than in the control, maximum phagocytic activity was 32% in 1.5 hours after infection (control - 28%). | AD | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A2-1 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental | Sr-90 | 3,70E+04 | 3,7E+06
(bones)
(equilibri
um *) | 2,7E-03
(kidney) | 1,9E-02
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 17% one hour after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|--|---------|-------------------------------|---|---------------------|---------------------|--|----------------|--| | | | | infection with
bacteria
Aeromonas
punctata.
Radiation
exposure 15
days | | | | | | | | | | A2-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria Aeromonas punctata. Radiation exposure 30 days | Sr-90 | 3,70E+04 | 3,7E+06
(bones)
(equilibri
um *) | 6,6E-03
(kidney) | 8,2E-02
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 15% one hour after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova, 1983 | | A2-3 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria Aeromonas punctata. | Sr-90 | 3,70E+04 | 3,7E+06
(bones)
(equilibri
um *) | 1,5E-02
(kidney) | 0,7
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 20% one hour after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova, 1983 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|------------------------------------|--|---------|-------------------------------|--|---------------------|------------------|---|----------------|---| | | | | Radiation
exposure 90
days | | | | | | | | | | A2-4 | Fish | Cyprinus carpio. Carp (1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: phagocytic activity of leucocytes on experimental infection with bacteria Aeromonas punctata. Radiation exposure 180 days | Sr-90 | 3,70E+04 | 3,7E+06
(bones)
(equilibri
um *) | 2,9E-02
(kidney) | 2,75
(kidney) | The overall response on infection was lower than in the control, maximum phagocytic activity was 17-18% in the period 1-1.5 hours after infection (control - 28%). | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A3 | Fish | Cyprinus carpio. Carp (1 year old) | Aquarium experiment, chronic exposure from Sr-90. Test: antibody production on repeated immunization with bacterial antigen (by the reaction of agglutination). Radiation exposure 90 days | Sr-90 | 1,85E+03 | 1,85E+05
(bones)
(equilibri
um *) | 0,001
(kidney) | 0,04
(kidney) | Weakening of immune activity: delay and reduction of antibody production on immunization
with bacterial antigen. Agglutinins appeared on 21st day (2 weeks later than in the control). Maximal titers of agglutinins (1:640 - 1:1260) were detected on 52-60 days, i.e. the peak of response was about 2 times lower and delayed comparing with the control response. Control response: antibodies appeared on the 7th day after immunization, maximum titer of agglutinins (1:2670) was detected on 36-th day. | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A4 | Fish | Cyprinus | Aquarium | Sr-90 | 3,70E+04 | 3,7E+06 | 0,015 | 0,7 | Weakening of immune activity: delay | MB | Shleifer & | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|---|---------------------|---------------------------|---|----------------|---| | | | carpio. Carp
(1 year old) | experiment,
chronic
exposure from
Sr-90. Test:
antibody
production on
repeated
immunization
with bacterial
antigen (by the
reaction of
agglutination).
Radiation
exposure 90
days | | | (bones)
(equilibri
um *) | (kidney) | (kidney) | and reduction of antibody production on immunization with bacterial antigen. Agglutinins appeared on 21st day (2 weeks later than in the control). Maximal titers of agglutinins (1:173 - 1:1280) were detected on 66-80 days, these titers were about 2 times lower and 1-1.5 months delayed the control response. Control response: antibodies appeared on the 7th day after immunization, maximum titer of agglutinins (1:2670) was detected on 36-th day. | | Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A5-1 | Fish | Cyprinus
carpio Carp | Aquarium experiment, chronic exposure, 30 days. Test: bacteriostatic properties of blood serum | Sr-90 | 1,85E+03 | 37000
(bones,
reconstru
ction) | 8,0E-05
(kidney) | 1,20E-03 | Stimulation of bacteriostatic properties of blood serum during the first 30 days of radiation exposure. | STIM | Shleifer &
Shekhanova,
1977,1980;
reviewed in
Shekhanova,1983
(p.111) | | A5-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure, 180 days. Test: bacteriostatic properties of blood serum. | Sr-90 | 1,85E+03 | 3.7E+4
(*) | 0,0009
(kidney) | from
1,2E-03
to 0,2 | No differences with the control in bacteriostatic properties of blood serum in the period from 30 up to 180 days of radiation exposure. | NE | Shleifer &
Shekhanova,
1977,1980;
reviewed in
Shekhanova,1983
(p.111) | | A5-3 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure, 270 days. Test: | Sr-90 | 1,85E+03 | 3,7E+4
(bones, *) | 0,0007
(kidney) | 0,2-0,34 | Gradual deterioration of bacteriostatic properties of blood serum at doses greater than 0.2 Gy. At the end of experiment the bacteriostatic activity was 80-85 % lower than the control | MB | Shleifer &
Shekhanova, 1977,
1980; reviewed in
Shekhanova,1983
(p.111) | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---|---|---------|-------------------------------|----------------------------------|--|----------------------------|---|----------------|--| | | | | bacteriostatic
properties of
blood serum. | | | | | | | | | | A6-1 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure, 15 days. Test: bacteriostatic properties of blood serum. | Sr-90 | 3,70E+04 | 370000
(bones, *) | 0,003
(kidney) | 0,02 | Stimulation of bacteriostatic properties of blood serum during the first 15 days of radiation exposure. | STIM | Shleifer &
Shekhanova, 1977,
1980; reviewed in
Shekhanova,1983
(p.111-112) | | A6-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure, 150 days. Test: bacteriostatic properties of blood serum | Sr-90 | 3,70E+04 | 3,70E+06 | 0,02
(kidney) | 0,02-0,5 | No differences with the control in bacteriostatic properties of blood serum in the period from 15 up to 150 days of radiation exposure. | NE | Shleifer &
Shekhanova, 1977,
1980; reviewed in
Shekhanova,1983
(p.111) | | A6-3 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure, 270 days. Test: bacteriostatic properties of blood serum | Sr-90 | 3,70E+04 | 3700000
(bones, *) | 0,03
(kidney) | 0,5-5,3 | Gradual deterioration of bacteriostatic properties of blood serum at doses greater than 0.5 Gy. At the end of experiment the bacteriostatic activity was 80-85 % lower than the control | MB | Shleifer &
Shekhanova, 1977,
1980; reviewed in
Shekhanova,1983
(p.111) | | A7 | Fish | Misgurnus
fossilis
Loach
(adult) | Aquarium
experiment,
chronic
exposure, 90
days | Sr-90 | 1,85E+03 | 3,7E+04
(bones, *) | 2E-03
(prelimin
ary
estimatio
n) | 0,04 (0,2 reconstru ction) | Negative biochemical changes in gonads of males. Reduction to zero of the glycogen concentration in gonads (control glicogen concentration 5-7 mg/gramm of gonads). Fatty testicles (up to 95 mg/g with a control of 26 mg/g). No similar effects were observed in females. | MB | Shekhanova,Belma
kov, Lapin,1969;
reviewed in
Shekhanova,1983
(p.114) | | A8 | Fish | Misgurnus | Aquarium | Sr-90 | 3,70E+04 | 3,7E+06 | 8E-03 | 0,7 | Negative biochemical changes in | MB | Shekhanova,Belma | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|--|----------------------|--|--|---|--------------------------------|---|----------------|--| | | | fossilis
Loach
(adult) | experiment,
chronic
exposure, 90
days | | | (bones)
(equilibri
um *) | (prelimin
ary
estimatio
n) | | testicles of males. Reduction to zero of the glycogen concentration in gonads (control glicogen concentration 5-7 mg/gramm of gonads). Fatty testicles (up to 127 mg/g with a control of 26 mg/g). | | kov, Lapin,1969;
reviewed in
Shekhanova,1983
(p.114) | | A9 | Fish | Cyprinus
carpio Carp
(1 year old) | Aquarium
experiment,
chronic
exposure, 360
days | Sr-90 | (3,7-
7,4)E+02 | (3,7-
7,4)E+04
(bones, *) | 0,003
(liver)
0,0015
(muscles) | 1 (liver);
0.5
(muscles) | Negative biochemical changes in the liver and muscles: increasing concentration of lipidoperoxides. Concentration of lipoperoxides in exposed fish: liver 18.98± 0.81 nMole/mg of lipids (control 5.9±0.8 nMole/mg of lipids); Muscles 15.94± 1.43 nMole/mg of lipids (control 3.48±0.85 nMole/mg of lipids) | MB | Storozhuk &
Shekhanova, 1977;
reviewed in
Shekhanova, 1983
(p.114) | | A10 | Fish | Ctenopharyn
godon
idella. Grass
carp (fry) | Aquarium
experiment,
chronic
exposure, 90
days | Sr-90 | 4,07E+04 | 4070000 (*) | 0,03 (eye) | >1,5
(eye) | Pathological deterioration of eyesight. Effect was observed since 50-th day of experiment. Edema of
crystalline lens and retina of the eye, dystrophic degeneration of the crystalline substance, disturbance of the structure of photoreceptors. | МВ | Nilov, Fedoseenko,
Shekhanova,1976;
reviewed in
Shekhanova,1983 | | A11 | Fish | Rutilus
rutilus
Roach | Water
reservoir
contaminated
from industrial
activity of PA
Mayak,
southern Urals.
Field study of
1971-1975 (N
about 1500). | Sr-
90,Cs-
137 | (5,9-
7,4)E+03
(⁹⁰ Sr);
(144-925)
(¹³⁷ Cs) | 1,5E+06
(%Sr in
bones,
d.w.);
1,6E+04
(%Sr in
muscles);
1,4E+04
(90Sr in
gonads);
7,8E+04
(137Cs in
muscles, | 7E-03
(internal);
1,5E-02
(bones);
0,0048
(external) | 4,4 (per year, (*)) | Fertility of roach decreased almost by a factor of 2 as compared to roach from the control water body. Spawning occured later than in the control. There were no fish older than 9 years in the spawning shoal. Gonads had normal structure, but the number of sexual cells was lower than the norm. The growth of fish did not differ from the control. | REPR | Peshkov et.al.,
1978 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|---|----------------------|--|--|---|----------------------------------|---|----------------|--| | A12 | Fish | Carassius
auratus
gibelio
Goldfish | Lake (presumably Berdenish), contaminated in 1957 (Kyshtym accident), southern Urals. Field studies of 1970s. | Sr-
90,Cs-
137 | 1,17E+03
(⁹⁰ Sr) | w.w.) (5.6- 11)E+04 (bones) | 5,00E-04 | 0,2 (Gy
per year,
(*)) | No specimens older than 8 years were present in the catches, which is not typical of the given species. Grown-up 4-7 year old specimens dominated. Morphological anomalies were observed in 24 % of the fish examined. For the most part, these were specimens with unpaired gonads, 17-28 % of these specimens were sterile. | REPR | Voronina E.A.,
Peshkov S.P., I.A.
Shekhanova,1977;
Kryshev, 2002
(doses) | | A13 | Fish | Carassius
auratus
gibelio
Goldfish | Lake (presumably Uruskul), contaminated in 1957 (Kyshtym accident), southern Urals. Field studies of 1970s. | Sr-
90,Cs-
137 | 1,48E+03 | (3,7-
5,5)E+05
(bones) | (3,0-
5,0)E-03 | 1,1-1,8
(Gy per
year, (*)) | No specimens older than 8 years were present in the catches, which is not typical of the given species. Specimens of 4-6 years of age dominated in the spawning shoal | MT | Voronina E.A.,
Peshkov S.P., I.A.
Shekhanova,1977;
Kryshev, 2002
(doses) | | A14 | Fish | Carassius
auratus
gibelio
Goldfish | Lake (presumably Uruskul), contaminated in 1957 (Kyshtym accident), southern Urals. Field studies of 1972-1975. | Sr-
90,Cs-
137 | 1,50E+03 | (3,7-
5,5)E+05 | (3,0-
5,0)E-03 | 1,1-1,8
(Gy per
year, (*)) | Morphological anomalies were observed in 15 % of the fish. These were mainly anomalies of gonad structure (unpaired gonads, sterility). | REPR | Voronina E.A.,
Peshkov S.P., I.A.
Shekhanova,1977 | | A15 | Fish | Rutilus
rutilus
Roach | Water
reservoir
contaminated
from industrial
activity of PA | Sr-
90,Cs-
137 | (5,9-
7,4)E+03
(⁹⁰ Sr);
(144-925)
(¹³⁷ Cs) | 1,5E+06
(90Sr in
bones,
d.w.);
1,6E+04 | 7E-03
(internal);
1,5E-02
(bones);
0,0048 | 4,4 (Gy per year, (*)) | Morphological anomalies were observed in 6-9 % of the grown-up fish, including 0.5-2.0 % with underdeveloped gonads or signs of hermaphroditism. In the control there | REPR | Ermokhin,
Muntian, 1977 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|---|---------------|------------------------------------|---|--------------------|------------------------------|---|----------------|--| | | | | Mayak,
southern Urals.
Field study of
1971-1975 (N
about 1500). | | | (90Sr in
muscles);
1,4E+04
(90Sr in
gonads);
7,8E+04
(137Cs in
muscles,
w.w.) | (external) | | were 0.5-1 % of the fish with morphological anomalies. | | | | A16 | Fish | Carassius
auratus
gibelio
Goldfish | Lake (presumably Berdenish), contaminated in 1957 (Kyshtym accident), southern Urals. Field studies of 1972-1975. | Sr-90 | 1,20E+03 | (9.6±0.4)
E+04
(⁹⁰ Sr,
bones) | 5,00E-04 | 0,2 (Gy
per year,
(*)) | a)Anomalies in the body structure: 13.4 % of specimens had one ovary, 18.2 % of specimens were without gonads, 18 % of specimens had morphological anomalies: curvature of fins and the tail part, irregular structure of scales (N=358). On artificial incubation of roe 40 % of normal embryos were produced. This value was not considered as low for the given species (Muntian, 1977). B) Morphological abnormalities were observed in 24% of fish examined: sterile were 17%(3+) and up to 25% (4+ and older) specimen (Voronina, Peshkov, Shekhanova, 1977). | REPR | Muntian, 1977;
Voronina, Peshkov,
Shekhanova, 1977 | | A17 | Fish | Carassius
carassius
Goldfish | Lake (presumably Berdenish), contaminated in 1957 (Kyshtym accident), southern Urals. Field study | Sr-90 | 1,20E+03 | (9.6±0.4)
E+04
(⁹⁰ Sr,
bones) | 5,00E-04 | 0,2 (Gy
per year,
(*)) | On artificial incubation of roe 51 % of normal embryos were produced. This value was not considered as low for the given species. | NE | Muntian, 1977 | | A18 | Fish | Esox lucius
Pike | Water
reservoir | Sr-
90,Cs- | 7,4E+03
(⁹⁰ Sr); 93 | 6.7E+05
(⁹⁰ Sr, | 0,002
((*)) | 0,7 (Gy
per year, | With respect to the condition of roe and the development of embryos, the | NE | Muntian, 1977 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|---|--|---|--|---------------------------|------------------------|--|----------------|---| | | | | contaminated
from industrial
activity of PA
Mayak,
southern Urals.
Field study of
1971-1975 | 137 | (¹³⁷ Cs) | bones);
1.9E+05
(¹³⁷ Cs,
muscles) | | (*)) | reproduction was qualitatively estimated as normal. | | | | A19 | Fish | Perca
fluviatilis
Perch | Water reservoir, contaminated in 1957 (Kyshtym accident), southern Urals. Field studies of 1970s. | Sr-
90,Cs-
137 | 7,4E+03
(°0Sr); 93
(¹³⁷ Cs) | (1,1-
11,5)E+0
5 (90Sr,
bones);
(3,2-
4,5)E+05
(137Cs,
muscles) | 0,0026, ((*)) | 1 (per year, (*)) | With respect to the condition of roe and the development of embryos, the reproduction was qualitatively estimated as normal. | NE | Muntian, 1977 | | A20 | Mollu
sc | Mollusc -
pond snail | Experiment in a pond, chronic, duration 4 months | Mixture of fission product s, 90 Sr dominat es | ~3,7E+03 | about
1E+05 (
prelimina
ry
estimatio
n) | 1E-03 -
1E-02
((*)) | | The representatives of benthos (pond-snails and edentates died during the summer season of observations. | MT | Marey, 1976 | | A21 | Shellf
ish | Crayfish | Experiment in a pond, chronic, 4 months | Mixture of fission product s, 90 Sr dominat es | ~3,7E+03 | about
1E+05 (
prelimina
ry
estimatio
n) | 1E-03
-
1E-02
((*)) | | Crayfish died during the summer season, part of the specimens left the experimental pond. | MT | Marey, 1976 | | A22 | Fish | Hypophthal
michthys
molitrix
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986 .Field | Cs-137 | 30±14 | 40000
(muscles) | 0,0004 ((*)) | 4 (1986-
1989), (*) | There were 5.7 % of sterile specimens 8.6 % of specimens with the gonad asymmetry. According to the data of cytological analysis, 25 % of males had anomalies of sexual cells. In the control population less than 0.25 % of | REPR | Belova et.al, 1993;
Kryshev et al.,
1996 (doses);
Kryshev, 1998
(doses) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|--|-------------------------------|----------------------------|--------------------|--|--|----------------|---| | | | | study of 1989 | | | | | | specimens were sterile. | | | | A23 | Fish | Hypophthal
michthys
molitrix
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986. Field
study of 1990 | Cs-137 | 14±6 | 40000
(muscles) | 0,0004, (*) | 4,3
(1986-
1990), (*) | There were 12.5 % of sterile specimens and 16.7 % of specimens with the gonad asymmetry. According to the data of cytological analysis, 47.1 % of fish had anomalies of sexual cells. | REPR | Belova et.al, 1993;
Kryshev et al.,
1996 (doses);
Kryshev, 1998
(doses) | | A24 | Fish | Hypophthal
michthys
molitrix.
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986. Field
study in 1991 | Cs-137
(also
other
radionu
clides) | 11 | 40000
(muscles) | 0,0004, | 4,5
(1986-
1991), (*) | There were 23.1 % of specimens with the gonad asymmetry. No sterile specimens were detected. According to the data of cytological analysis, 68.8 % of fish had anomalies of sexual cells. | REPR | Belova et.al, 1993;
Kryshev et al.,
1996 (doses);
Kryshev, 1998
(doses) | | A25 | Fish | Hypophthal
michthys
molitrix.
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986. Field
study in 1992 | Cs-137 | 8 | | 0,0004, | 4,6
(1986-
1992), (*) | The data of investigation of fish from fishing cribs: 42.9 % of males had a deformed shape of gonads. According to the data of cytological analysis, 100 % of males and 33.3 % of females had anomalies of sexual cells. | REPR | Belova et.al, 1993;
Kryshev et al.,
1996 (doses);
Kryshev, 1998
(doses) | | A26 | Fish | Hypophthal
michthys
molitrix.
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986. Field
study in 1992 | Cs-137 | 8 | | 0,0004, | 4,6
(1986-
1992), (*) | The data of investigation of freely-living fish from the cooling pond of the Chernobyl NPP: 15.4 % of males were partially sterile, and 9.1 % of females had the gonad asymmetry. According to the data of cytological analysis, 89.5 % of fish had anomalies of sexual cells. | REPR | Belova et.al, 1993;
Kryshev et al.,
1996 (doses);
Kryshev, 1998
(doses) | | A27 | Fish | Hypophthal
michthys
molitrix.
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
accidental
contamination | Cs-137 | 8 | 7500-
9000
(muscles) | (4-5)E-04 | 0,18 (per
year in
1989-
1992) | The offspring from the first generation of silver carps that survived the Chernobyl accident, the year of birth 1989, were grown in fishing-cribs in the cooling pond of the Chernobyl NPP. In 1992, 28.7 % of fish had | REPR | Makeeva et
al.,1994 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|--|----------------------|--|--|----------------|------------------------| | | | | in 1986. Field
study,1989-
1992 | | | | | | anomalies, including 2.8 % sterile bisexual specimens, 11.1 % with anomalies of the gonad shape, 8.3 % with anomalies of the body shape, 3.7 % with anomalies of the swimming bladder, and 2.8 % with the other anomalies. | | | | A28 | Fish | Hypophthal
michthys
molitrix.
Silver carp | Cooling Pond
of the
Chernobyl
NPP,
contaminated
in 1986. Field
study, 1990-
1992 | Cs-137 | | 7500-
9000
(muscles) | (4-5)E-04 | 0,18 (per
year in
1989-
1992) | The offspring from the first generation of silver carps that survived the Chernobyl accident, the year of birth 1990, were grown in fishing-cribs in the cooling pond of the Chernobyl NPP. In 1992, 12.1% of fish had anomalies, including 3.2 % with anomalies of the gonad shape and 8.9 % with anomalies of the body shape. No sterile specimens were observed in this generation. According to the data of cytological analysis, all specimens had anomalies in sexual cells, and the number of anomalous sexual cells ranged from 1 % to 20 %. | REPR | Makeeva et
al.,1994 | | A30 | Zoopl
ankto
n | Daphnia | Experiment | Sr-90 | (3.7-
37)E+05 | (3.7-
37)E+7,
(*) | 0,57-5,7, | | Lifetime of Daphnia organisms decreased by 10-15 days as compared to the control. | МТ | Lebedeva,1957 | | A31 | Zoopl
ankto
n | Daphnia | Experiment | Sr-90 | (3.7-
370)E+03 | (3.7-
370)E+5
,
prelimina
ry
estimatio
n | 0,0057-
0,57, (*) | | The number of young Daphnia increased in the first two days; then suppression manifested itself, and the number of molts and young crustaceans decreased. | MT | Lebedeva,1957 | | A32 | Zoopl
ankto
n | Daphnia | Experiment | Sr-90 | 3,70 | 370, (*) | 0,000005
7, (*) | | A weak stimulating effect was observed in Daphnia organisms. | STIM | Lebedeva,1957 | | A33 | Fish | Esox lucius | Water | Sr- | | 7,8E+04 | (6,5 ± | 2,7 (per | On artificial incubation of roe the | REPR | Smagin,1996 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|-------------------|--|---|--|--|--|----------------|------------------| | | | Pike | body,contamin
ated from
industrial
activity of PA
"Mayak",
Southern
Urals, Russia,
water reservoir
N.10.Field
studies of
1983-1986 | 90,Cs-
137 | 14,8E+03
Bq/L of
90Sr and
300 Bq/L
of 137Cs. | Bq/kg
(Sr-90);
1,3E+05
Bq/kg
(Cs-137)
in adult
pike | 2)E-03 Gy/day from b- radiation (1 ± 0.3)E-03 Gy/day from g- radiation (gonads of adult pikes) | year,
internal),
(*) | percentage of embryoss with abnormalities was 10 times higher (13%) than in the control (1%). Nine types of various deformities occurred in the contaminated water body and one-two types in the control. Forelarvae with anomalies of development died in the first month of life, i.e. were cut off by natural selection | | | | A34 | Fish
eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe, 8 days | Sr-90 +
Cs-137 | <3,7E+05
(Sr-90)+
3,7E+04
(Cs-137) | | 5E-03
((*)) | 4E-02
((*)) | Stimulation of embryonic development of irradiated fish eggs and earlier hatching of fore-larvae: on the 8th day hatching in the control was 18,8%; in experimental series 70-83.5%. Number of anomalous or dead eggs did not differ
from control. | STIM | Pitkyanen,1971 | | A35-1 | Fish
eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe, 8 days | Sr-90 | <1,85E+0
7 | | <0,24
(*) | <3,36
(external,
reconstru
ction) | On artificial incubation of roe the percentage of embryos with abnormalities didn't differ statistically from that in the control (3.8-4.6%). | NE | Pitkyanen,1971 | | A35-2 | Fish
eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe, 8 days | Sr-90 | 3,70E+07 | | 0,47 (*) | 6,58
(external,
reconstru
ction) | On artificial incubation of roe the percentage of embryos with abnormalities was 33.3% that is 7-8 times higher than in the control (3.8-4.6%). | REPR | Pitkyanen,1971 | | A35-3 | Fish eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe, 8 days | Sr-90 | >=7,4E+0
7 | | 0,94(*) | 7,5(*) | On artificial incubation of roe all embryos had abnormalities and fore-larvae died within 5 days after hatching. | МТ | Pitkyanen,1971 | | A36 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe, up to 128 | Sr-90-
Y-90 | 3,7 | | 4,7E-08
(externa
l, | 6,0E-06
(external,
reconstru
ction) | On artificial incubation of roe a stimulation of red blood development in embryos was observed. Primary mature erithrocytes were found in | STIM | Neustroev (1966) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|----------------------------|-----------------------------|----------|--|----------------|--------------------------------------| | | | | days; T=1-2 C | | | | reconstr
uction) | | large amounts on 109-th day in blood of experimental embryos (80% of red blood elements); in the control mature erithrocytes appeared on 128-th day (20% of red blood elements). The development of experimental embryos proceeded more rapidly, and hatching began earlier than in the control. | | | | A37-1 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=200.
Test:death of
fish eggs | Co-60 | 9,25E+06 | | 0,33 (*, external) | 17,2 | Most part (80%) of eggs died before hatching (control: 16.5%; 0.75 <p<0.85)< td=""><td>MT</td><td>Lyapin,Podgursky,
Knyazeva (1971)</td></p<0.85)<> | MT | Lyapin,Podgursky,
Knyazeva (1971) | | A37-2 | Fish eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=200 | Co-60 | 9,25E+05 | | 0,032 (*, external) | 1,72 | Up to 54% of eggs died before hatching (control: 16.5%; 0.47 <p<0.61)< td=""><td>MT</td><td>Lyapin,Podgursky,
Knyazeva (1971)</td></p<0.61)<> | MT | Lyapin,Podgursky,
Knyazeva (1971) | | A37-3 | Fish eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=200.
Test:death of
fish eggs | Co-60 | 3,70E+03 | | 1,3E-04
(*,
external) | 6,70E-03 | No statistical difference with the control in the number of fish eggs died before hatching | NE | Lyapin,Podgursky,
Knyazeva (1971) | | A37-4 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=100. Test: | Co-60 | 3,70E+06 | | 0,13(*, external) | 6,9 | Practically all (98%) of fore-larvae died within few days after hatching. | МТ | Lyapin,Podgursky,
Knyazeva (1971) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|----------------------------------|---------------------------------------|--|--|----------------|--------------------------------------| | | | | survival of fore-larvae | | | | | | | | | | A37-5 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=100. Test:
survival of
fore-larvae | Co-60 | 3,70E+06 | | 0,13(*, external) | 6,9 | Practically all (98%) of fore-larvae died within few days after hatching. | MT | Lyapin,Podgursky,
Knyazeva (1971) | | A38-1 | Fish eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=100. Test:
survival of
fore-larvae | Mn-54 | 3,70E+05 | | 4,3*10(-
3)
(external)
, (*) | 0,55
(external)
, (*) | Increased percentage of fish eggs died during the artificial incubation of roe: 52% in the experiment and 16.5% in the control. From survived eggs up to 14.5% of larvae had abnormalities (control 3.8%) | MT | Lyapin,Podgursky,
Knyazeva (1971) | | A38-2 | Fish eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 128
days; T=7-9 C | Mn-54 | 1,48E+04 | | 1,7*10(-
4)
(external)
, (*) | 0,022
(external)
, (*) | Increased percentage of fish eggs died during the artificial incubation of roe: 26% in the experiment and 16.5% in the control.From survived eggs the increased % of abnormalities in larvae was observed - 9.4% (control 3.8%). | MT | Lyapin,Podgursky,
Knyazeva (1971) | | A38-3 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 128
days; T=7-9 C.
Test:death of
fish eggs | Mn-54 | 3,70E+01 | | 0,000000
4(external
), (*) | | No statistical difference with the control in the number of fish eggs died before hatching | NE | Lyapin,Podgursky,
Knyazeva (1971) | | A38-4 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C. | Mn-54 | 3,70E+05 | | 0,0043(ex ternal), (*) | 0,55
(exposure
of eggs,
reconstru
ction) | Number of died forelarvae was somewhat higher (31-36%) than that in the control (21%).Difference was statisticaly reliable. | МТ | Lyapin,Podgursky,
Knyazeva (1971) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------------------------------------|-------------------------------|----------------------------|---|---|---|----------------|--------------------------------------| | | | | N=100. Test:
survival of
fore-larvae | | | | | | | | | | A38-5 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=100. Test:
survival of
fore-larvae | Mn-54 | 1,48E+04 | | 1,7E-
04(extern
al), (*) | 0,022
(exposure
of eggs,
reconstru
ction) | No statistical difference with the control in the early death of forelarvae | NE | Lyapin,Podgursky,
Knyazeva (1971) | | A38-6 | Fish
eggs | Salmo
irideus
Gibbans.
Rainbow
trout | Experiment,
artificial
incubation of
roe, up to 52
days; T=7-9 C.
N=100. Test:
survival of
fore-larvae | Mn-54 | 3,70E+01 | | 0,000000
4(external
), (*) | | No difference with the control in the early death of forelarvae | NE | Lyapin,Podgursky,
Knyazeva (1971) | | A39-
1 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe, up to 66
days | Sr-90 | 185 | | 2,35E-
06
(externa
1,
reconstr
uction) | 1,55E-04
(external,
reconstru
ction) | Mortality of salmon eggs and larvae was 1.5 times higher than in the control. | MT | Fedorov et.al. (1962). | | A39-
2 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe, up to 66
days | Cs-137 | 93 | | 8,3E-07
(externa
1,
reconstr
uction) | 5,5E-05
(external,
reconstru
ction) | Mortality of salmon eggs and larvae was 2.4 times higher than in the control | MT | Fedorov et.al. (1962). | | A40-
1 | Fish
eggs | Coregonus
peled.
Peled | Several
experiments
carried out in 4
years, artificial | Mixture
s of
fission
product | 1,11E+02
-
1,11E+08 | | | >5 | The mortality of fish eggs increased with absorbed dose beginning from the dose 5 Gy. At doses higher than 300 Gy complete death of roe was | МТ | Mashneva &
Sukalskaya (1973) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---|-------------------------------|----------------------------|--------------------|-----------|---|----------------|---------------------------------| | | | | incubation of
roe. T=2-4 C.
Eggs were
incubated from
stage "late
gastrula" | s (Y-
131,
Ba-
140+La
-140,
Ru-106) | | | | | observed | | | | A40-
2 | Fish
eggs | Coregonus
peled. Peled | Several experiments carried out in 4 years, artificial incubation of roe. T=2-4 C. Eggs were incubated from stage "late gastrula" | Mixture
s of
fission
product
s (Y-
131,
Ba-
140+La
-140,
Ru-106) | >1,11E+0
8 | | | >300 | At doses higher than 300 Gy complete death of roe was observed | MT | Mashneva &
Sukalskaya (1973) | | A41-
1 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe. 234 days | Ce-144 | 5,90E+04 | | 0,001 (*) | 0,234 (*) | Hatching started about 3-4 days earlier than that in the control and was more prolonged in time. Number of eggs died before hutching were somewhat higher than control value. | MT | Kasatkina et.al. (1973) | | A41-
2 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe. 234 days | Ce-144 | 5,18E+03 | | 0,000086 (*) | 0,02 (*) | Hatching started about 3-4 days earlier than that in the control and was more prolonged in time. Number of eggs died before hutching were somewhat higher than control value. | MT | Kasatkina et.al. (1973) | | A41-
3 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Ce-144 | 5,90E+04 | | 0,001 (*) | 0,234 (*) | Negative changes in the red blood of forelarvae (1-7 days old). Concentrations of erythrocytes were 2-2,5 times lower than that in the control. | MB | Kasatkina et.al. (1973) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------|--|---------|-------------------------------|----------------------------|--------------------|-----------|---|----------------|-------------------------| | A41-
4 | Fish eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Ce-144 | 5,18E+03 | | 0,000086 (*) | 0,02 (*) | Negative changes in the red blood of forelarvae (1-7 days old). Concentrations of erythrocytes were 2-2,5 times lower than that in the control. | MB | Kasatkina et.al. (1973) | | A41-
5 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe.Exposure
of eggs 234
days,
forelarvae was
kept in
contaminated
water. | Ce-144 | 5,90E+04 | | 0,001 (*) | 0,234 (*) | Negative cytogenetic changes in the red blood of forelarvae (1-7 days old). Large number of aberrant mitoses was found. Also picnosis, lisis, vacuolisation of nuclea and cytoplasm were detected in red blood cells. | CG | Kasatkina et.al. (1973) | | A41-
6 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe. Exposure
of eggs 234
days,
forelarvae was
kept in
contaminated
water. | Ce-144 | 5,18E+03 | | 0,000086 (*) | 0,02 (*) | Negative cytogenetic changes in the red blood of forelarvae (1-7 days old). Large number of aberrant mitoses was found. Also picnosis, lisis, vacuolisation of nuclea and cytoplasm were detected in red blood cells. | CG | Kasatkina et.al. (1973) | | A41-
7 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe up to 234 days. | Ce-144 | 5,90E+04 | | 0,001 (*) | 0,234 (*) | The amount of primary sex cells in embryos (80-231 days of egg development) was 1.5-1.8 times higher than that in the control. There were no abnormal embryos at activity concentrations lower than 10(-6) Ci/L | CG | Kasatkina et.al. (1973) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|--------------------|-----------|---|----------------|-------------------------| | A41-
8 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe up to 234
days. | Ce-144 | 5,18E+03 | | 0,000086 (*) | 0,02 (*) | The amount of primary sex sells in embryos (80-231 days of egg development) was 1.5-1.8 times higher than that in the control. There were no abnormal embryos at activity concentrations lower than 10(-6) Ci/L | CG | Kasatkina et.al. (1973) | | A41-
9 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe.Exposure
of eggs 234
days,
forelarvae was
kept in
contaminated
water. | Ce-144 | 5,90E+04 | | 0,001 (*) | 0,234 (*) | Negative changes in the thyroid gland and hypophysis of exposed forelarvae, which are typical for radiation reaction: destructive changes in epitelia, picnosis of nuclei, bloking of hormon extraction. | CG | Kasatkina et.al. (1973) | | A41-
10 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Ce-144 | 5,18E+03 | | 0,000086 (*) | 0,02 (*) | Negative changes in the thyroid gland and hypophysis of exposed forelarvae, which are typical for radiation reaction: destructive changes in epitelia, picnosis of nuclei, bloking of hormon extraction. | CG | Kasatkina et.al. (1973) | | A42-
1 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe.Exposure
of eggs 234
days,
forelarvae was
kept in
contaminated
water. | Cs-137 | 2,20E+05 | | 0,002 (*) | 0,468 (*) | Negative changes in the red blood of forelarvae (1-7 days old). Concentrations of erythrocytes were 2-2,5 times lower than that in the control. | MB | Kasatkina et.al. (1973) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------------|--------------------|-----------|---|----------------|-------------------------| | A42-
2 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Cs-137 | 1,85E+04 | | 1,7E-04
(*) | 0,039 (*) | Negative changes in the red blood of forelarvae (1-7 days old). Concentrations of erythrocytes were 2-2,5 times lower than that in the control. | MB | Kasatkina et.al. (1973) | | A42-
3 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe.Exposure
of eggs 234
days,
forelarvae was
kept in
contaminated
water. | Cs-137 | 2,20E+05 | | 0,002 (*) | 0,468 (*) | Negative cytogenetic changes in the red blood of forelarvae (1-7 days old). Large number of aberrant mitoses was found. Also picnosis, lisis, vacuolisation of nuclea and cytoplasm were detected in red blood cells. | CG | Kasatkina et.al. (1973) | | A42-
4 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water.
 Cs-137 | 1,85E+04 | | 1,7E-04
(*) | 0,039 (*) | Negative cytogenetic changes in the red blood of forelarvae (1-7 days old). Large number of aberrant mitoses was found. Also picnosis, lisis, vacuolisation of nuclea and cytoplasm were detected in red blood cells. | CG | Kasatkina et.al. (1973) | | A42-
5 | Fish
eggs | Salmo salar.
Salmon | Experiment,
artificial
incubation of
roe up to 234
days. | Cs-137 | 2,20E+05 | | 0,002 (*) | 0,468 (*) | The amount of primary sex sells in embryos (80-231 days of egg development) was 1.5-1.8 times higher than that in the control. | CG | Kasatkina et.al. (1973) | | A42- | Fish | Salmo salar. | Experiment, | Cs-137 | 1,85E+04 | | 1,7E-04 | 0,039 (*) | The amount of primary sex sells in | CG | Kasatkina et.al. | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------------|--|---------|-------------------------------|----------------------------------|-----------------------------|-----------|--|----------------|-------------------------| | 6 | eggs | Salmon | artificial incubation of roe up to 234 days. | | | | (*) | | embryos (80-231 days of egg development) was 1.5-1.8 times higher than that in the control. | | (1973) | | A42-
7 | Fish
eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Cs-137 | 2,20E+05 | | 0,002 (*) | 0,468 (*) | Negative changes in the thyroid gland and hypophysis of exposed forelarvae, which are typical for radiation reaction: destructive changes in epitelia, picnosis of nuclei, bloking of hormon extraction. | CG | Kasatkina et.al. (1973) | | A42-
8 | Fish eggs | Salmo salar.
Salmon | Experiment, artificial incubation of roe.Exposure of eggs 234 days, forelarvae was kept in contaminated water. | Cs-137 | 1,85E+04 | | 1,7E-04
((*)) | 0,039 (*) | Negative changes in the thyroid gland and hypophysis of exposed forelarvae, which are typical for radiation reaction: destructive changes in epitelia, picnosis of nuclei, bloking of hormon extraction. | CG | Kasatkina et.al. (1973) | | A43-
1 | Fish
eggs | Carassius
carassius
Goldfish. | Experiment, artificial incubation of roe in radionuclide solution from stage 8-16 blastomers (N=40-50). | C-14 | 7,4E+05 -
7,3E+06 | | 5,1E-04 -
5,1E-03
(*) | | Mortality of the goldfish roe was 2 times higher (18-20%) than in the control (6,6%), p=0.5 | MT | Fedorova (1964) | | A43-
2 | Fish
eggs | Carassius
carassius
Goldfish. | Experiment, artificial incubation of | C-14 | 7,40E+04 | | 0,000051 (*) | | Mortality of the goldfish roe did not differ from the control | NE | Fedorova (1964) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--------------------------------|---|---------|-------------------------------|----------------------------------|------------------------------------|----------|--|----------------|-------------------------| | | | | roe in radionuclide solution from stage 8-16 blastomers (N=40-50). | | | | | | | | | | A44 | Fish
eggs | Rutilus
rutilus
Roach. | Experiment, artificial incubation of roe in radionuclide solution from stage 8-16 blastomers (N=40-45). | C-14 | 7,4E+04 -
7,3E+06 | | 5,1E-05 -
5,1E-03
(*) | | Mortality of roach roe was 2-2.8 times higher (33-47%) than in the control (17%) | MT | Fedorova (1964) | | A45 | Fish
eggs | Alburnus
alburnus
Bleak. | Experiment, artificial incubation of roe in radionuclide solution from stage 8-16 blastomers (N=47-57). | C-14 | 7,4E+04 -
7,3E+06 | | 5,1E-05 -
5,1E-03
(*) | | Mortality of bleak roe did not differ from control | NE | Fedorova (1964) | | A46 | Fish
eggs | Acerina
cernua Ruff. | Experiment, artificial incubation of roe in radionuclide solution from stage 8-16 blastomers (N=65-74). | C-14 | 7,4E+04 -
7,3E+06 | | 5,1E-05 -
5,1E-03
(*) | | Mortality of ruff roe did not differ from control | NE | Fedorova (1964) | | A47 | Fish
eggs | Tinca tinca
Tench | Experiment, artificial incubation of | Sr-90 | 37 -
3,7E+06 | | 4,7E-07 -
4,7E-02
(external, | | The percentage of the hatched eggs was about the same as in the control. | NE | Timofeeva et.al. (1971) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------|---|---------|-------------------------------|----------------------------|---|----------|---|----------------|-------------------------------| | A48 | Fish
eggs | Perca
fluviatilis
Perch | roe Experiment, artificial incubation of roe | Sr-90 | 37 -
3,7E+06 | | *) 4,7E-07 - 4,7E-02 (*, external) | | The percentage of the hatched eggs was about the same as in the control. | NE | Timofeeva et.al. (1971) | | A49-1 | Fish eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe | Sr-90 | 37 -
3,7E+06 | | 4,7E-07 -
4,7E-02
(*,
external) | | The percentage of the hatched eggs was about the same as in the control. | NE | Timofeeva et.al. (1971) | | A49-2 | Fish
eggs | Esox lucius
Pike | Experiment,
artificial
incubation of
roe | Sr-90 | 37 -
3,7E+06 | | 4,7E-03 -
4,7E-02
(*,
external) | | Number of damaged anophases and telophases at the stage of late blastula was statistically higher than that in the control. | CG | Timofeeva et.al. (1971) | | A50-1 | Mollu
sc | Limnaea
stagnalis
mollusk | Experiment,
artificial
incubation of
roe | Sr-90 | 1,85E+07 | | 0,24
(external,
reconstru
ction) | | Percentage of hatched eggs became considerably lower than in the control | MT | Timofeeva et.al. (1971) | | A50-2 | Mollu
sc | Limnaea
stagnalis
mollusk | Experiment,
artificial
incubation of
roe | Sr-90 | 3,70E+08 | | 4,7 (*, external) | | All mollusc's embryos died during 1 day | MT | Timofeeva et.al. (1971) | | A51-1 | Fish
eggs | Esox lucius
Pike. | Experiment,
artificial
incubation of
roe, 7 days | Sr-90 | 3,7E+06 -
3E+07 | | 0,047 -
0,37 (*,
external) | | The percent of died eggs did not differ statistically from control. | NE | Pitkyanen &
Shvedov (1971) | | A51-2 | Fish eggs | Esox lucius
Pike. | Experiment,
artificial
incubation of
roe, 7 days.
Forelarvae was
kept in
contaminated
water. | Sr-90 | 3,00E+07 | | 0,37 (*,
external) | | Abnormal larvae comprised 53% of hatched larvae. The abnormalities led to the death of larvae on the 15-22th day after the hatching | MT | Pitkyanen &
Shvedov (1971) | | A51-3 | Fish
eggs | Esox lucius
Pike. | Experiment,
artificial
incubation of | Sr-90 | 7,40E+07 | | 0,94 (*,
external) | | All hatched forelarvae had serious abnormalities | MT | Pitkyanen &
Shvedov (1971) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|------------------------------------|-------------------------------|----------------------------------|---|----------|--|----------------|-----------------------------| | | | | roe, 7 days. Forelarvae was kept in contaminated water. | | | | | | | | | | A52 | Fish | Esox
lucius(pike) | Kiev Reservoir
of the Dnieper
River, field
study | Cs-137 | | 200-1600
Bq/kg | (0,7-
5,8)E-06
(internal),
(*) | | 3 types of abnormalities of gonads were observed: asymmetry of gonads (34.1%), roe resorption (12.5%), water in gonads (2.5%). Asymmetry of gonads was observed in all pike generations born after the Chernobyl accident. | REPR | Polyakova, 2001 | | A53 | Zoopl
ankto
n | Cyclops
(Copepoda) | Experiment, acute exposure | External
gamma-
exposur
e | | | | 2 | Reproduction of exposed cyclops was about 4 times lower than in the control. Lifetime of adult organisms did not changed. | REPR | Onanko, 1973 | | A54 | Zoopl
ankto
n | Cladocera (Daphnia
longispina, Moina brachiata, Ceriodaphni a affinis, etc. In total, 6 species) | Experiment, acute exposure | External
gamma-
exposur
e | | | | 20 | Exposed organisms had higher fecundity comparing with the control. | STIM | Onanko, 1973 | | A55-1 | Benth
os | Ostracoda | Experiment, acute exposure | External
gamma-
exposur
e | | | | 2,5-10 | Exposed organisms had higher fecundity (up to 200%) comparing with the control. | STIM | Dolgushina,
Onanko, 1973 | | A55-2 | Benth
os | Ostracoda | Experiment, acute exposure | External
gamma-
exposur
e | | | | 20 | Exposed organisms had lower fecundity comparing with the control. | REPR | Dolgushina,
Onanko, 1973 | | A56-1 | Fish eggs | Salmo salar.
Atlantic
salmon. | Experiment, artificial incubation of | External
gamma-
exposur | | | | 3,14 | This dose caused 50% mortality of embryos (LD50) exposed at 1st day of egg's development | MT | Gorodilov, 1971 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------------|---|------------------------------------|-------------------------------|----------------------------|--------------------|----------|---|----------------|-----------------| | | | | roe, 110 days. Acute exposure at one of development periods.Stage "8-cells" embrio | e | | | | | | | | | A56-2 | Fish
eggs | Salmo salar.
Atlantic
salmon. | Experiment,
artificial
incubation of
roe, 110 days.
Acute
exposure at
20-24 days of
egg's
development | External
gamma-
exposur
e | | | | 8 | This dose caused 50% mortality of embryos (LD50) exposed at 20-24 days of egg's development | MT | Gorodilov, 1971 | | A57-1 | Fish
eggs | Coregonus
peled. Peled | Experiment, artificial incubation of roe, 75 days.5 C. Acute exposure at 2-6 days development. | External
gamma-
exposur
e | | | | 5 | This dose caused 100% mortality of embryos (LD) exposed at 2-6 days of egg's development | MT | Gorodilov, 1971 | | A57-2 | Fish
eggs | Coregonus
peled. Peled | Experiment, artificial incubation of roe, 75 days.5 C. Acute exposure at 10-16 days of development. | External
gamma-
exposur
e | | | | 5 | This dose caused 40% mortality of embryos (LD40) exposed at10-16 days of egg's development | MT | Gorodilov, 1971 | | A58-1 | Fish
eggs | Salmo
irideus
Gairdnerii. | Experiment,
artificial
incubation of | External gamma-exposur | | | | 5 | This dose caused 100% mortality of embryos (LD) exposed at 3rd day of egg's development | MT | Gorodilov, 1971 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|------------------------------------|-------------------------------|----------------------------------|---------------------------|----------|---|----------------|-------------------------| | | | Rainbow
trout | roe. 5 C. Acute exposure at 3rd day of development. | e | | | | | | | | | A58-2 | Fish
eggs | Salmo
irideus
Gairdnerii.
Rainbow
trout | Experiment,
artificial
incubation of
roe, 75 days.5
C. Acute
exposure at
11th day of
development. | External
gamma-
exposur
e | | | | 5 | This dose caused 60% mortality of embryos (LD40) exposed at 11th day of egg's development | MT | Gorodilov, 1971 | | A59-1 | Zoopl
ankto
n | Cladocera
(Daphnia) | Experiment,
single addition
of radionuclide
in aquatic
system | Ru-106 | 0,0003
Ci/l | | 0,2
(external,
(*)) | | No effect on mortality of Daphnia | NE | Guskova et al.,
1973 | | A59-2 | Zoopl
ankto
n | Cladocera
(Daphnia) | Experiment,
single addition
of radionuclide
in aquatic
system | Ru-106 | 5E-03
Ci/l | | 3,3
(external,
(*)) | | Decrease in survival of Daphnia by 15-20% | MT | Guskova et al.,
1973 | | A60-1 | Fish | Tilapia
mossambica
(small
aquarium
fish) | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,7 | 370 (*) | 4,00E-06 | 8,50E-04 | 213-th day of experiment - both control and exposed fish were ready for spawning. No effect –exposed fish had normal gonads. | NE | Shekhanova, 1983; | | A60-2 | Fish | Tilapia
mossambica | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,70E+02 | 37000 (*) | 4,00E-04 | 0,1 | 213-th day of experiment: control fish specimen were ready for spawning. Exposed fish: gonads of males were smaller in mass than in the control, spermatogenesis was somewhat reduced. Females had normal gonads. | REPR | Shekhanova, 1983 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------------|--------------------------------|-----------------------------------|---|----------------|--| | A60-3 | Fish | Tilapia
mossambica | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,70E+04 | 3700000 (*) | (3-5)E-02 | from 8 to 10 | 213-th day of experiment: control fish was ready for spawning. Exposed fish: 100% of males were sterile (N=120). Gonads were vitreous semitransparent bars or filamentous transparent bars. 30 % of females had underdeveloped ovaries. In total 80 % of females had anomalies of ovaries. | REPR | Shekhanova, 1983 | | A61-1 | Fish | Tilapia
mossambica | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,7 | 370(*) | 4,00E-06 | (3-4)E-03
(reconstru
ction) | Weak stimulating effect on fertility (tests: % of impregnated roe and the number of normal larvae per one female) Observations were made during the whole reproducting period of fish | REPR | Voronina,
1973,1974;
reviewed in
Shekhanova,1983 | | A61-2 | Fish | Tilapia
mossambica | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,70E+02 | 37000 (*) | 4,00E-04 | 0,2-0,3
(reconstru
ction) | Production of fish eggs -120% of control. Reduction in the number of normal larvae produced after spawning up to 80 % of the control (calculated per one female). After spawnings females died earlier than in the control. Observations were made during the whole reproducting period of fish | REPR | Voronina,
1973,1974;
reviewed in
Shekhanova,1983
(p.127); detail
description see in
Abstract 4_6 | | A61-3 | Fish | Tilapia
mossambica | Aquarium experiment, chronic exposure during the whole lifetime, 550 days | Sr-90 | 3,70E+04 | 3700000
(*) | (3-5)E-
02; 0,1
(gonads) | from 8 to 10 | Complete suppression of reproduction. Males were sterile. On impregnation of experimental females by control males the produced larvae died during 160 days. | REPR | Voronina,
1973,1974;
reviewed in
Shekhanova,1983
(p.127); detail
description see in
Abstract 4_6 | | A62-1 | Fish | Tilapia
mossambica | Aquarium
experiment,
chronic
exposure | Sr-90 | 1,48E+05 | | 0,05 (eye) | 2 (eye) | Pathological deterioration of eyesight.
Effect was observed at doses to eyes
greater than 2 Gy Edema of crystalline
lens and retina of the eye, dystrophic
degeneration of the crystalline | MB | Shekhanova,1983,
p.131. | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|------------------|-------------------------------|---|---------------------|---|--|----------------|---| | | | | | | | | | | substance, disturbance of the structure of
photoreceptors. | | | | A63-1 | Fish | Tilapia
mossambica | Aquarium
experiment,
chronic
exposure, 800
days | Sr-90 | (3,7-
7,4)E+02 | 5,60E+04 | 4,00E-04 | 0,4 | Lifetime of exposed fish was shorter than in the control. Survived at the end of experiment (800 days) were 54% of exposed fish (control - 71%). | MT | Orlov, 1973, 1974;
reviewed in
Shekhanova,1983 | | A63-2 | Fish | Tilapia
mossambica | Aquarium
experiment,
chronic
exposure, 800
days | Sr-90 | (3,7-
7,4)E+04 | 5600000 (*) | 3,00E-02 | 24 (body), 70 (bones), prelimina ry reconstru ction | Lifetime of exposed fish was shorter than in the control. Survived at the end of experiment (800 days) were 33% of exposed fish (control - 71%). | MT | Orlov, 1973, 1974;
reviewed in
Shekhanova,1983 | | A64-1 | Fish | Tilapia
mossambica | Aquarium
experiment,
chronic
exposure, 180
days | Sr-90 | 5,55E+04 | 5550000 (*) | (3-5)E-02 | (5-9)
(reconstru
ction | Increasing mortality on experimental infection with parasites: 56-60 % of specimens died in the experiment and 13-28 % in the control. | MT | Orlov, 1973, 1974;
reviewed in
Shekhanova,1983
(p.132); | | A64-2 | Fish | Tilapia
mossambica | Aquarium
experiment,
chronic
exposure 180
days | Sr-90 | 3,70E+02 | 37000 (*) | 4,00E-04 | 0,1(recon struction) | The tendency for an increased mortality on experimental infection with parasites. Differences from the control were statistically insignificant. | MT | Orlov, 1973, 1974;
reviewed in
Shekhanova,1983
(p.132) | | A65-1 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90 up to 270 days. Analyses of blood components on 15th, 30th,90th,180t | ⁹⁰ Sr | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m) (*) | 3,3E-05
(kidney) | less than 0,3-0,4 | Concentrations of red blood components did not differ statistically from control. | NE | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|--|---|------------------|-------------------------------|---|---------------------|------------------------------|---|----------------|---| | | | | h and 270th days. | | | | | | | | | | A65-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90 up to 270 days. Analyses of blood components on 15th, 30th,90th,180t h and 270th days. | ⁹⁰ Sr | 3,70E+04 | 3,7E+06
(bones,
equilibriu
m) (*) | 2,7E-03
(kidney) | less than 5,3 | Concentrations of red blood components did not differ statistically from control.Some abnormalities in erythrocytes were found. | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A66-1 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90 up to 270 days. Analyses of blood components on 15th, 30th,90th,180t h and 270th days. | ⁹⁰ Sr | 1,85E+03 | 1,85E+05
(bones,
equilibriu
m) (*) | 3,3E-05
(kidney) | doses
higher
than 0,04 | Concentrations of leucocytes became ststistically lower than in the control. Phase changes in leucocytes concentration with time were detected. | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | A66-2 | Fish | Cyprinus
carpio. Carp
(1 year old) | Aquarium experiment, chronic exposure from Sr-90 up to 270 days. Analyses of blood | ⁹⁰ Sr | 3,70E+04 | 3,7E+06
(bones,
equilibriu
m) (*) | 2,7E-03
(kidney) | doses
higher
than 0,7 | Concentrations of leucocytes were considerably lower (about 50%) than in the control. Inversion in lymphocyte/granulocute/monocyte proportion | MB | Shleifer &
Shekhanova, 1977,
1980; Shekhanova,
Orlov, Shleifer
(1978); reviewed in
Shekhanova,1983 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|----------------------|--|----------------------------------|---|--|---|----------------|------------------| | | | | components on
15th,
30th,90th,180t
h and 270th
days. | | | | | | | | | | A67-1 | Fish
eggs | Esox lucius
Pike | Water body contaminated with radionuclides, Southern Urals, Russia. Fish eggs were obtained from pike dwelling the contaminated water body. Artificial incubation of roe in a)clean water; b) contaminated water. | Sr-
90+Cs-
137 | Sr-90
(3,7E+03)
+Cs-137
(3,7E+02) | | 0,0033
(bones);
0,0027(go
nads) of
parent
fish | 1,2
Gy/year
(bones),
1Gy/per
year
(gonads)
exposure
of parent
fish | The number of abnormal forelarvae from exposed female pikes was considerably higher (30%) than in the control (1%). The same effect was observed in keeping eggs in either clean or or containated water. | REPR | Pitkyanen (1978) | | A67-2 | Fish
eggs | Esox lucius
Pike | Artificial incubation of roe of pike in water contaminated with Sr-90 and Cs-137. | Sr-
90+Cs-
137 | Sr-90
(3,7E+03)
+Cs-137
(3,7E+02) | | 0,0033
(bones);
0,0027(go
nads) of
parent
fish | 1,2
Gy/year
(bones),
1Gy/per
year
(gonads)
exposure
of parent
fish | No difference with the control in amount of death of eggs (14-18%) and abnormalities of forelarvae (1%). | NE | Pitkyanen (1978) | | A67-3 | Fish | Esox lucius
Pike | Water body
contaminated
with
radionuclides, | Sr-
90+Cs-
137 | Sr-90
(3,7E+03)
+Cs-137
(3,7E+02) | | 0,0033
(bones);
0,0027(go
nads) of | 1,2
Gy/year
(bones),
1Gy/per | No effect of growth of pike. Growth rate was characterized as good comparing with the control | REPR | Pitkyanen (1978) | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|------------------------------|-------------------------------|---|---------|-------------------------------|----------------------------------|----------------------|---|--|----------------|----------------| | | | | Southern Urals, Russia. Fish eggs were obtained from pike dwelling the contaminated water body. Artificial incubation of roe in a)clean water; b) contaminated water. | | | | parent
fish | year
(gonads)
exposure
of parent
fish | | | | | A68-1 | Bacte
ria
plankt
on | | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of bacteia. | | | | 1,5
Gy/secon
d | 200-
40000 | The number of bacteria was the minimal in the control (396 thousand of cells per mL) in 4 hours after exposure for every dose. | STIM | Raziulyte,1973 | | A68-2 | Bacte
ria
plankt
on | | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of bacteia. | | | | 1,5
Gy/secon
d | 200-
40000 | Increase of the number of bacteria in comparison with the control for all variants of doses in 1 day after exposure. The number of bacteria was the maximum under the dose in 7500 Gy (1870 thousand of cells per mL). | STIM | Raziulyte,1973 | | A68-3 | Bacte
ria
plankt
on | | Experiment,
external
gamma
exposure, | | | | 1,5
Gy/secon
d | 200-
40000 | Increase of the number of bacteria in comparison with the control for the doses 2500 Gy (4259 thousand of cells per mL)and 7500 Gy (2990 thousand | STIM | Raziulyte,1973 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|------------------------------|---
---|---------|-------------------------------|----------------------------|----------------------|---------------|--|----------------|----------------| | | | | experiment duration - 79 day. Test: the number of bacteia. | | | | | | of cells per mL) in 29 days after
exposure. No difference in the number
of bacteria from control for the rest
doses. | | | | A68-4 | Bacte
ria
plankt
on | | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of bacteia. | | | | 1,5
Gy/secon
d | 200-
40000 | The number of bacteria was the minimal in the control in 79 days after exposure for every dose. The number of bacteria was the maximum under the dose in 7500 Gy (1424 thousand of cells per mL). | STIM | Raziulyte,1973 | | A69 | Phyto
plankt
on | 13 species of
algae in
planktonic
biocenosis | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of algae. | | | | 1,5
Gy/secon
d | 200-
40000 | The number of algae was the minimal in the control in 79 days after exposure. for every dose (except dose 10000 Gy). The number of algae was the maximum under the dose in 2500 Gy (47654 thousand of cells per mL). | STIM | Raziulyte,1973 | | A70-1 | Phyto
plankt
on | Scenedesmu
s
quadricauda | Experiment with pure cultures of algae, external gamma exposure, experiment duration - 15 days. Test: the biomass of algae. | | | | 1,5
Gy/secon
d | 100-400 | Derease of the biomass of algae for dose 400 Gy by factor of 2 in comparison with the control. | MT | Raziulyte,1973 | | A70-2 | Phyto
plankt | Pediastrus
boryanus | Experiment with pure | | | | 1,5
Gy/secon | 100-400 | Decrease of the biomass of algae for dose 400 Gy by factor of 6 in | MT | Raziulyte,1973 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|---------|-------------------------------|----------------------------------|----------------------|---------------|--|----------------|----------------| | | on | | cultures of algae, external gamma exposure, experiment duration - 15 days. Test: the biomass of algae. | | | | d | | comparison with the control. | | | | A70-3 | Phyto
plankt
on | Phormidium
uncinatum | Experiment with pure cultures of algae, external gamma exposure, experiment duration - 15 days. Test: the biomass of algae. | | | | 1,5
Gy/secon
d | 100-400 | No discrepancy for the biomass of algae under exposure in comparison with the control. The biomass of algae was 387 mg/l under dose 400 Gy, and 354 mg/l in the control. | NE | Raziulyte,1973 | | A71-1 | Zoopl
ankto
n | 8 species of
animals in
planktonic
biocenosis | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of plankton animals. | | | | 1,5
Gy/secon
d | 200-
40000 | Decrease of the number of plankton animals in comparison with the control (2516 1/L) for all variants of doses in 1 day after exposure. | MT | Raziulyte,1973 | | A71-2 | Zoopl
ankto
n | 8 species of
animals in
planktonic
biocenosis | Experiment,
external
gamma
exposure,
experiment
duration - 79 | | | | 1,5
Gy/secon
d | 200-
40000 | Planktonic animal were observed only for dose 200 Gy and control in 29 and 79 days after exposure. Death of planktonic animals under the doses 500 Gy and higher. | MT | Raziulyte,1973 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|---------|-------------------------------|----------------------------------|------------------------|----------|--|----------------|----------------| | | | | day. Test: the number of plankton animals. | | | | | | | | | | A71-3 | Zoopl
ankto
n | 8 species of
animals in
planktonic
biocenosis | Experiment, external gamma exposure, experiment duration - 79 day. Test: the number of plankton animals. | | | | 1,5
Gy/secon
d | 200 | Decrease of the number of species of plankton animals from 8 to 3 in 79 days after exposure. | MT | Raziulyte,1973 | | A72-1 | Mollu
sc | Lymnaea
stagnalis L.
Pond snail | Experiment, external gamma exposure to embryo of pond snails from Ural lakes. Test: survival of embryos. | | | | 0,195
Gy/minut
e | 6 | Decrease of the survival of embryos of pond snails after gamma-exposure 6 Gy in comparison with the control. The survival of irradiated embryos was 27,9% (27,7-28,1%) (N=497), and 97,6% (97,3-97,9%) (N=641) in the control (Lake Bol'shoy Tatkul', July). | MT | Famelis,1973 | | A72-2 | Mollu
sc | Lymnaea
stagnalis L.
Pond snail | Experiment, external gamma exposure to embryo of pond snails from Ural lakes. Test: survival of embryos. | | | | 0,195
Gy/minut
e | 6 | Decrease of the survival of embryos of pond snails after gamma-exposure 6 Gy in comparison with the control. The survival of irradiated embryos was 72,8% (67-791%) (N=554), and 97,5% (96,9-98,1%) (N=874) in the control (Lake Bol'shoe Miassovo', July). | MT | Famelis,1973 | | A72-3 | Mollu
sc | Lymnaea
stagnalis L. | Experiment, external | | | | 0,195
Gy/minut | 6 | Decrease of the survival of embryos of pond snails after gamma-exposure 6 | MT | Famelis,1973 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|----------------| | | | Pond snail | gamma exposure to embryo of pond snails from Ural lakes. Test: survival of embryos. | | | | е | | Gy in comparison with the control. The survival of irradiated embryos was 31,1% (26-36,2%) (N=984), and 94,5% (91,6-97,4%) (N=828) in the control (Lake Bol'shoy Tatkul', August). | | | | A72-4 | Mollu
sc | Lymnaea
stagnalis L.
Pond snail | Experiment, external gamma exposure to embryo of pond snails from Ural lakes. Test: survival of embryos. | | | | 0,195
Gy/minut
e | 6 | Decrease of the survival of embryos of pond snails after gamma-exposure 6 Gy in comparison with the control. The survival of irradiated embryos was 47,8% (42-53,6%) (N=716), and 99,3% (99,1-99,5%) (N=705) in the control (Lake Bol'shoe Miassovo', August). | MT | Famelis,1973 | | A72-5 | Mollu
sc | Lymnaea
stagnalis L.
Pond snail | Experiment, external gamma exposure to embryo of pond snails from Ural lakes. Test: survival of embryos. | | | | 0,195
Gy/minut
e | 6 | Decrease of the survival of embryos of pond snails after gamma-exposure 6 Gy in comparison with the control. The survival of irradiated embryos was 49,9% (45-54,8%) (N=1424), and 99,3% (99,1-99,5%) (N=705) in the control (Lake Bol'shoe Miassovo', August). | MT | Famelis,1973 | | A73-1 | Mollu
sc | Patinopecte
n yessoensis
Scallop | Experiment, external gamma exposure to scallops at the age of 1 and 2 years. Test: ability to | | | | 0,1
Gy/secon
d | 7,5 | Destructive changes in gonads of the scallops at the age of 1 and 2 years: coagulation of karyoplasm, extoliation of cytoplasm from external cell membrane, appearance of large vacuoles, and defects of cytoskeleton. These changes were observed in 2-4 days after exposure. The animals were | REPR | Kulepanov,1989 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|---------|-------------------------------|----------------------------------|--------------------------
--------------------------|---|----------------|-------------------------------------| | | | | reproduction. | | | | | | sexually mature in 1 year after exposure 7,5 Gy. | | | | A73-2 | Mollu
sc | Patinopecte
n yessoensis
Scallop | Experiment, external gamma exposure to scallops at the age of 1 and 2 years. Test: ability to reproduction. | | | | 0,1
Gy/secon
d | 15 | Destructive changes in gonads of the scallops at the age of 1 and 2 years: coagulation of karyoplasm, extoliation of cytoplasm from external cell membrane, appearance of large vacuoles, and defects of cytoskeleton. These changes were observed in 2-4 days after exposure. The animals were sterile in 1 year after exposure 15 Gy. | REPR | Kulepanov,1989 | | A74-1 | Fish | Misgurnus
fossilis
Loach | Experiment,
external
gamma
exposure to
males of loach.
Test:
development
of larva of
fish. | | | | 0,77
Gy/minut
e | 0,5-10 | Increase of dead and abnormal larva with increase of dose to body of fish. Delay of larva emergense was observed on the dose 10 Gy. | REPR | Nechaevskii,1989 | | A74-2 | Fish | Misgurnus
fossilis
Loach | Experiment, external gamma exposure to males of loach. Test: development of larva of fish. | | | | 0,77
Gy/minut
e | 2 | Decrease of dead and abnormal larva
by factor of 2 under the exposure 2 Gy
to head of males in comparison of
control. | STIM | Nechaevskii,1989 | | A75-1 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 1 mg/l
(12,3
Bq/l) | No data | 0,00074
Gy/day
(*) | 0,022
Gy/month
(*) | Decrease of the fertility rate (the number of born animals from 10 females for 30 days) on 21% in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-2 | Zoopl
ankto | Daphnia
magna | Experiment, exposure to | U-238 | 1 mg/l (12,3 | No data | 0,00074
Gy/day | 0,022
Gy/month | Increase of the interval between moultings on 1 day (for last generation | REPR | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------------|--------------------------|--------------------------|--|----------------|-------------------------------------| | | n | Straus
Daphnia | Daphnia in
130 days. Test:
reproduction | | Bq/l) | | (*) | (*) | of animals) in comparison with the control. The interval between moultings was 5 days in experiment, and 4 days in the control. | | | | A75-3 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 1 mg/l
(12,3
Bq/l) | No data | 0,00074
Gy/day
(*) | 0,022
Gy/month
(*) | Increase of the period of pubescence interval on 5 days (for last generation of animals) in comparison with the control. The period of pubescence was 14 days for irradiated animals, and 9 days in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-4 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 1 mg/l
(12,3
Bq/l) | No data | 0,00074
Gy/day
(*) | 0,022
Gy/month
(*) | Decrease of the litter from 1 female by factor of 3,4 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-5 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,5 mg/l
(6,15
Bq/l) | No data | 0,00037
Gy/day
(*) | 0,011
Gy/month
(*) | Increase of the fertility rate (the number of born animals from 10 femalts for 30 days) on 13% in comparison with the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-6 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,5 mg/l
(6,15
Bq/l) | No data | 0,00037
Gy/day
(*) | 0,011
Gy/month
(*) | Decrease of the interval between moultings on 1 day (for last generation of animals) in comparison with the control. The interval between moultings was 3 days in experiment, and 4 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-7 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,5 mg/l
(6,15
Bq/l) | No data | 0,00037
Gy/day
(*) | 0,011
Gy/month
(*) | Decrease of the period of pubescence interval on 2 days (for last generation of animals) in comparison with the control. The period of pubescence was 7 days for irradiated animals, and 9 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-8 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test: | U-238 | 0,5 mg/l
(6,15
Bq/l) | No data | 0,00037
Gy/day
(*) | 0,011
Gy/month
(*) | Decrease of the litter from 1 female by factor of 2,2 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------------|---------------------------|---------------------------|---|----------------|-------------------------------------| | A75-9 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | reproduction Experiment, exposure to Daphnia in 130 days. Test: reproduction | U-238 | 0,05 mg/l
(0,615
Bq/l) | No data | 0,000037
Gy/day
(*) | 0,0011
Gy/month
(*) | Increase of the fertility rate (the number of born animals from 10 femalts for 30 days) on 6% in comparison with the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-10 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,05 mg/l
(0,615
Bq/l) | No data | 0,000037
Gy/day
(*) | 0,0011
Gy/month
(*) | Decrease of the interval between moultings on 1-2 days (for last generation of animals) in comparison with the control. The interval between moultings was 2-3 days in experiment, and 4 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-11 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,05 mg/l
(0,615
Bq/l) | No data | 0,000037
Gy/day
(*) | 0,0011
Gy/month
(*) | Decrease of the period of pubescence interval on 3-5 days (for last generation of animals) in comparison with the control. The period of pubescence was 4-6 days for irradiated animals, and 9 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-12 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | U-238 | 0,05 mg/l
(0,615
Bq/l) | No data | 0,000037
Gy/day
(*) | 0,0011
Gy/month
(*) | Decrease of the litter from 1 female by factor of 1,5 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-13 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,5 mg/l
(2 Bq/l) | No data | 0,00055
Gy/day
(*) | 0,017
Gy/month
(*) | Decrease of the fertility rate (the number of born animals from 10 femalts for 30 days) on 32% in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-14 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,5 mg/l
(2 Bq/l) | No data | 0,00055
Gy/day
(*) | 0,017
Gy/month
(*) | Increase of the interval between moultings on 2 day (for last generation of animals) in comparison with the control. The interval between moultings was 6 days in experiment, and 4 days in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-15 | Zoopl
ankto | Daphnia
magna | Experiment, exposure to | Th-232 | 0,5 mg/l
(2 Bq/l) | No data |
0,00055
Gy/day | 0,017
Gy/month | Increase of the period of pubescence interval on 4 days (for last generation | REPR | Telitchenko,1958;
Stroganov,1959 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------------|-----------------------------|----------------------------|--|----------------|-------------------------------------| | | n | Straus
Daphnia | Daphnia in
130 days. Test:
reproduction | | | | (*) | (*) | of animals) in comparison with the control. The period of pubescence was 13 days for irradiated animals, and 9 days in the control. | | | | A75-16 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,5 mg/l
(2 Bq/l) | No data | 0,00055
Gy/day
(*) | 0,017
Gy/month
(*) | Decrease of the litter from 1 female by factor of 6,3 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-17 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,05 mg/l
(2 Bq/l) | No data | 0,000055
Gy/day
(*) | 0,0017
Gy/month
(*) | Increase of the fertility rate (the number of born animals from 10 femalts for 30 days) on 20% in comparison with the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-18 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,05 mg/l
(2 Bq/l) | No data | 0,000055
Gy/day
(*) | 0,0017
Gy/month
(*) | No changes for the interval between moultings (for last generation of animals) in comparison with the control (4 days). The interval between moultings was 6 days in experiment, and 4 days in the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A75-19 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,05 mg/l
(2 Bq/l) | No data | 0,000055
Gy/day
(*) | 0,0017
Gy/month
(*) | Decrease of the period of pubescence interval on 1 day (for last generation of animals) in comparison with the control. The period of pubescence was 8 days for irradiated animals, and 9 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-20 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,05 mg/l
(2 Bq/l) | No data | 0,000055
Gy/day
(*) | 0,0017
Gy/month
(*) | Decrease of the litter from 1 female by factor of 2,7 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A75-21 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,005
mg/l (2
Bq/l) | No data | 0,000005
5 Gy/day
(*) | 0,00017
Gy/month
(*) | Increase of the fertility rate (the number of born animals from 10 femalts for 30 days) on 17% in comparison with the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|-----------------|---|----------------------------------|-----------------------------|----------------------------|---|----------------|-------------------------------------| | A75-22 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,005
mg/l (2
Bq/l) | No data | 0,000005
5 Gy/day
(*) | 0,00017
Gy/month
(*) | No changes for the interval between moultings (for last generation of animals) in comparison with the control (4 days). The interval between moultings was 6 days in experiment, and 4 days in the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A75-23 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,005
mg/l (2
Bq/l) | No data | 0,000005
5 Gy/day
(*) | 0,00017
Gy/month
(*) | Decrease of the period of pubescence interval on 2 days (for last generation of animals) in comparison with the control. The period of pubescence was 7 days for irradiated animals, and 9 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A75-24 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in
130 days. Test:
reproduction | Th-232 | 0,005
mg/l (2
Bq/l) | No data | 0,000005
5 Gy/day
(*) | 0,00017
Gy/month
(*) | Decrease of the litter from 1 female by factor of 2,4 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-1 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 000
Bq/l Sr-
89, 70
000 Bq/l | No data | 0,2
Gy/day
(*) | 6
Gy/month
(*) | Decrease of the fertility rate (the number of born animals from 10 femalts for 80 days) on 65% in comparison with the control. The fertility rate was 917 in experiment, and 2661 in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-2 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 000
Bq/l Sr-
89, 70
000 Bq/l | No data | 0,2
Gy/day
(*) | 6
Gy/month
(*) | Increase of the interval between moultings on 2 days (for last generation of animals) in comparison with the control. The interval between moultings was 6 days in experiment, and 4 days in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-3 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 000
Bq/l Sr-
89, 70
000 Bq/l | No data | 0,2
Gy/day
(*) | 6
Gy/month
(*) | Increase of the period of pubescence interval on 5 days (for last generation of animals) in comparison with the control. The period of pubescence was 13 days for irradiated animals, and 8 days in the control. Decrease of the litter from 1 female by | REPR
REPR | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|-----------------|---|----------------------------|------------------------|-------------------------|--|----------------|-------------------------------------| | | ankto
n | magna
Straus
Daphnia | exposure to
Daphnia in 80
days. Test:
reproduction | Sr-89 | 300 000
Bq/l Sr-
89, 70
000 Bq/l | | Gy/day
(*) | Gy/month (*) | factor of 3,3 (for last generation of animals) in comparison with the control. | | Stroganov,1959 | | A76-5 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
000 Bq/l
Sr-89, 7
000 Bq/l | No data | 0,02
Gy/day
(*) | 0,6
Gy/month
(*) | Decrease of the fertility rate (the number of born animals from 10 femalts for 80 days) on 26% in comparison with the control. The fertility rate was 1963 in experiment, and 2661 in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-6 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
000 Bq/l
Sr-89, 7
000 Bq/l | No data | 0,02
Gy/day
(*) | 0,6
Gy/month
(*) | No change for the interval between moultings (for last generation of animals) in comparison with the control (4 days). | NE | Telitchenko,1958;
Stroganov,1959 | | A76-7 | Zoopl
ankto
n |
Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
000 Bq/l
Sr-89, 7
000 Bq/l | No data | 0,02
Gy/day
(*) | 0,6
Gy/month
(*) | Increase of the period of pubescence interval on 1 day (for last generation of animals) in comparison with the control. The period of pubescence was 9 days for irradiated animals, and 8 days in the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-8 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
000 Bq/l
Sr-89, 7
000 Bq/l | No data | 0,02
Gy/day
(*) | 0,6
Gy/month
(*) | Decrease of the litter from 1 female by factor of 1,6 (for last generation of animals) in comparison with the control. | REPR | Telitchenko,1958;
Stroganov,1959 | | A76-9 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 3
000 Bq/l
Sr-89,
700 Bq/l | No data | 0,002
Gy/day
(*) | 0,06
Gy/month
(*) | No significant change for the fertility rate (the number of born animals from 10 femalts for 80 days) in comparison with the control. The fertility rate was 2511 in experiment, and 2661 in the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A76-10 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test: | Sr-90,
Sr-89 | Sr-90, 3
000 Bq/l
Sr-89,
700 Bq/l | No data | 0,002
Gy/day
(*) | 0,06
Gy/month
(*) | No change for the interval between moultings (for last generation of animals) in comparison with the control (4 days). | NE | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|-----------------|--|----------------------------------|-------------------------|--------------------------|---|----------------|-------------------------------------| | A76-11 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | reproduction Experiment, exposure to Daphnia in 80 days. Test: reproduction | Sr-90,
Sr-89 | Sr-90, 3
000 Bq/l
Sr-89,
700 Bq/l | No data | 0,002
Gy/day
(*) | 0,06
Gy/month
(*) | No change for period of pubescence interval (for last generation of animals) in comparison with the control. The period of pubescence was 8-9 days for irradiated animals, and 8 days in the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A76-12 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 3
000 Bq/l
Sr-89,
700 Bq/l | No data | 0,002
Gy/day
(*) | 0,06
Gy/month
(*) | Increase of the litter from 1 female by factor of 1,3 (for last generation of animals) in comparison with the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A76-13 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 Bq/l
Sr-89, 70
Bq/l | No data | 0,0002
Gy/day
(*) | 0,006
Gy/month
(*) | No significant change for the fertility rate (the number of born animals from 10 femalts for 80 days) in comparison with the control. The fertility rate was 2617 in experiment, and 2661 in the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A76-14 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 Bq/l
Sr-89, 70
Bq/l | No data | 0,0002
Gy/day
(*) | 0,006
Gy/month
(*) | No change for the interval between moultings (for last generation of animals) in comparison with the control (4 days). | NE | Telitchenko,1958;
Stroganov,1959 | | A76-15 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 Bq/l
Sr-89, 70
Bq/l | No data | 0,0002
Gy/day
(*) | 0,006
Gy/month
(*) | Decrease of the period of pubescence interval on 1-2 days (for last generation of animals) in comparison with the control. The period of pubescence was 6-7 days for irradiated animals, and 8 days in the control. | STIM | Telitchenko,1958;
Stroganov,1959 | | A76-16 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90,
300 Bq/l
Sr-89, 70
Bq/l | No data | 0,0002
Gy/day
(*) | 0,006
Gy/month
(*) | No change for the litter from 1 female (for last generation of animals) in comparison with the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A76-17 | zoopl
ankto | Daphnia
magna | Experiment, exposure to | Sr-90,
Sr-89 | Sr-90, 30
Bq/l | No data | 0,00002
Gy/day | 0,0006
Gy/month | No significant change for the fertility rate (the number of born animals from | NE | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|-----------------|---------------------------------------|----------------------------------|--------------------------|---------------------------|---|-----------------------|-------------------------------------| | | n | Straus
Daphnia | Daphnia in 80 days. Test: reproduction | | Sr-89, 70
Bq/l | | (*) | (*) | 10 femalts for 80 days) in comparison with the control. The fertility rate was 2711 in experiment, and 2661 in the control. | | | | A76-18 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
Bq/l
Sr-89, 7
Bq/l | No data | 0,00002
Gy/day
(*) | 0,0006
Gy/month
(*) | Decrease of the interval between moultings on 1 day (for last generation of animals) in comparison with the control (4 days). | STIM | Telitchenko,1958;
Stroganov,1959 | | A76-19 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
Bq/l Sr-
89, 7 Bq/l | No data | 0,00002
Gy/day
(*) | 0,0006
Gy/month
(*) | No change for the period of pubescence interval (for last generation of animals) in comparison with the control (8 days). | NE | Telitchenko,1958;
Stroganov,1959 | | A76-20 | zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment,
exposure to
Daphnia in 80
days. Test:
reproduction | Sr-90,
Sr-89 | Sr-90, 30
Bq/l Sr-
89, 7 Bq/l | No data | 0,00002
Gy/day
(*) | 0,0006
Gy/month
(*) | No change for the litter from 1 female (for last generation of animals) in comparison with the control. | NE | Telitchenko,1958;
Stroganov,1959 | | A76-21 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: reproduction | Stable
Sr | 5 mg/l | No data | | | Decrease of the fertility rate (the number of born animals from 10 femalts for 80 days) on 68% in comparison with the control. The fertility rate was 854 in experiment, and 2661 in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A76-22 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: | Stable
Sr | 5 mg/l | No data | | | Increase of the interval between moultings on 3 days (for last generation of animals) in comparison with the control. The interval between moultings was 7 days in experiment, and 4 days in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|--------------|-------------------------------|----------------------------|--------------------|----------
--|-----------------------|-------------------------------------| | A76-23 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | reproduction Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: | Stable
Sr | 5 mg/l | No data | | | Increase of the period of pubescence interval on 6-7 days (for last generation of animals) in comparison with the control. The period of pubescence was 14-15 days in experiment, and 8 days in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A76-24 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | reproduction Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: reproduction | Stable
Sr | 5 mg/l | No data | | | Decrease of the litter from 1 female by factor of 3 (for last generation of animals) in comparison with the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A76-25 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: reproduction | Stable
Sr | 1 mg/l | No data | | | Decrease of the fertility rate (the number of born animals from 10 femalts for 80 days) on 20% in comparison with the control. The fertility rate was 2117 in experiment, and 2661 in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A76-26 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: | Stable
Sr | 5 mg/l | No data | | | Increase of the interval between moultings on 1 day (for last generation of animals) in comparison with the control. The interval between moultings was 5 days in experiment, and 4 days in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---|--|-----------------------------------|-------------------------------|----------------------------------|---------------------------|----------|---|-----------------------|--| | A76-27 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | reproduction Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: reproduction | Stable
Sr | 5 mg/l | No data | | | Increase of the period of pubescence interval on 2 days (for last generation of animals) in comparison with the control. The period of pubescence was 10 days in experiment, and 8 days in the control. | REPR
,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A76-28 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Experiment, impact of increased concentration of stable isotop of Sr to Daphnia in 80 days. Test: reproduction | Stable
Sr | 5 mg/l | No data | | | No significant change for the litter from 1 female (for last generation of animals) in comparison with the control. | NE,
CHE
M | Telitchenko,1958;
Stroganov,1959 | | A77 | Benth | Stylaria
lacustris
Oligochaeta
e | Chernobyl
contaminated
area, 10-km
zone, Pripyat'
River, 1991 | Cs-137,
Sr-90
and
others | No data | No data | 0,043E-
03
Gy/day | No data | Increase of the level of chromosomal aberrations for Oligochaetae in highly contaminated area by factor of 2,1 in comparison with not much contaminated area (Strocholesie). In the Pripyat' River the level of chromosomal aberrations was 13,7% (N=637), and in the Strocholesie area (with exposure 0,0024 mGy/day) - 6,4 % (N=887). | CG | Polikarpov,1996;
Tsytsugina,
2000,2002 | | A78-1 | Fish | Alburnus
lucidus.
Bleak | Experiment,
exposure to
fish (at the age
of 2 years) in
400 days. Test:
reproduction | U-238 | 1 mg/l
(12,3
Bq/l) | No data | 0,000074
Gy/day
(*) | 0,03 (*) | Suppression of the development of ovaries, prepotant development of milts in comparison with the control (N=5). | REPR | Stroganov,1958 | | A78-2 | Fish | Alburnus | Experiment, | U-238 | 5 mg/l | No data | 0,00037 | 0,15 (*) | Degeneration of ovaries in melts, | REPR | Stroganov,1 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|--------------------------------|---|----------------|-------------------------------|----------------------------------|--------------------------|----------------|---|----------------|-----------------------| | | | lucidus.
Bleak | exposure to
fish (at the age
of 2 years) in
400 days. Test:
reproduction | | (61,5
Bq/l) | | Gy/day
(*) | | formation of intersexes. 3 males and 2 intersexes were obseved in experiment, and 3 females and 2 males - in the control. | | | | A78-3 | Fish | Alburnus
lucidus.
Bleak | Experiment,
exposure to
fish (at the age
of 2 years) in
400 days. Test:
reproduction | U-238 | 25 mg/l
(307,5
Bq/l) | No data | 0,00185
Gy/day
(*) | 0,75 (*) | Degeneration of ovaries in melts, formation of intersexes. 3 males and 2 intersexes were obseved in experiment, and 3 females and 2 males - in the control. | REPR | Stroganov,1958 | | A79-1 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7,4 | No data | No data | 0,000000
28 | No significant change in the quantity of lost fish eggs (16,2%) in comparison with the control (14,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-2 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 740 | No data | No data | 0,000028 | No significant change in the quantity of lost fish eggs (12,8%) in comparison with the control (14,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-3 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000 | No data | No data | 0,0028 | No significant change in the quantity of lost fish eggs (15,7%) in comparison with the control (14,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-4 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7400000 | No data | No data | 0,28 | No significant change in the quantity of lost fish eggs (17,3%) in comparison with the control (14,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-5 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000000
0 | No data | No data | 28 | No significant change in the quantity of lost fish eggs (13,4%) in comparison with the control (14,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-6 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7,4 | No data | No data | 0,000000
28 | Increase of the quantity of abnormal larva with defects of axled skeleton (4%) in comparison with the control (2,3%) (N=150). | REPR | Pechkurenkov,
1978 | | A79-7 | Fish | Misgurnus | Experiment. | Sr- | 740 | No data | No data | 0,000028 | Increase of the quantity of abnormal | REPR | Pechkurenkov, | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--------------------------------|-------------|----------------|-------------------------------|----------------------------|--------------------|----------------|--|----------------|-----------------------| | | eggs | fossilis
Loach | | 90,Y-90 | | | | | larva with defects of axled skeleton (6,1%) in comparison with the control (2,3%) (N=150). | | 1978 | | A79-8 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000 | No data | No data | 0,0028 | No significant change in the quantity of abnormal larva with defects of axled skeleton (2,6%) in comparison with the control (2,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-9 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7400000 | No data | No data | 0,28 | No significant change in the quantity of abnormal larva with defects of axled skeleton (3,1%) in comparison with the control (2,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-10 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000000
0 | No data | No data | 28 | Increase of the quantity of abnormal larva with
defects of axled skeleton (15,6%) in comparison with the control (2,3%) (N=150). | REPR | Pechkurenkov,
1978 | | A79-11 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7,4 | No data | No data | 0,000000
28 | No significant change of the quantity of abnormal larva with heavy defects (5,6%) in comparison with the control (4,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-12 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 740 | No data | No data | 0,000028 | No significant change of the quantity of abnormal larva with heavy defects (3,2%) in comparison with the control (4,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-13 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000 | No data | No data | 0,0028 | No significant change of the quantity of abnormal larva with heavy defects (4,0%) in comparison with the control (4,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-14 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7400000 | No data | No data | 0,28 | No significant change of the quantity of abnormal larva with heavy defects (6,2%) in comparison with the control (4,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-15 | Fish eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000000
0 | No data | No data | 28 | No significant change of the quantity of abnormal larva with heavy defects (5,3%) in comparison with the control (4,3%) (N=150). | NE | Pechkurenkov,
1978 | | A79-16 | Fish | Misgurnus | Experiment. | Sr- | 7,4 | No data | No data | 0,000000 | No significant change of the quantity | NE | Pechkurenkov, | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|----------------------------------|--------------------------------------|-------------------------------|--|----------------------------------|--------------------|----------|---|----------------|----------------------------| | | eggs | fossilis
Loach | | 90,Y-90 | | | | 28 | of variable anaphases of larva (5,2%) in comparison with the control (4,6%) (N=150). | | 1978 | | A79-17 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 740 | No data | No data | 0,000028 | No significant change of the quantity of variable anaphases of larva (6,1%) in comparison with the control (4,6%) (N=150). | NE | Pechkurenkov,
1978 | | A79-18 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000 | No data | No data | 0,0028 | No significant change of the quantity of variable anaphases of larva (3,9%) in comparison with the control (4,6%) (N=150). | NE | Pechkurenkov,
1978 | | A79-19 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 7400000 | No data | No data | 0,28 | No significant change of the quantity of variable anaphases of larva (4,4%) in comparison with the control (4,6%) (N=150). | NE | Pechkurenkov,
1978 | | A79-20 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-
90,Y-90 | 74000000
0 | No data | No data | 28 | Increase of the quantity of variable anaphases of larva (62,0%) in comparison with the control (4,6%) (N=150). | CG | Pechkurenkov,
1978 | | A79-21 | Fish
eggs | Misgurnus
fossilis
Loach | Experiment. | Sr-89 | 74000000
0 | No data | No data | No data | Increase of the quantity of variable anaphases of larva (43,0%) in comparison with the control (4,6%) (N=150). | CG | Pechkurenkov,
1974,1978 | | A80 | Fish
eggs | Esox lucius
L. Pike | Exposure in experimental water body. | Sr-
90,Y-
90,Cs-
137 | 5920 Bq/l
for Sr-
90,Y-90;
140 Bq/l
for Cs-
137 | No data | 0,0013 | | Increase of the quantity of variable anaphases of larva (5,4%, N=34) in comparison with the control (2,1%, N=21). | CG | Pechkurenkov,
1978 | | A81 | Fish
eggs | Perca
fluviatilis L.
Perch | Exposure in experimental water body. | Sr-
90,Y-
90,Cs-
137 | 5920 Bq/l
for Sr-
90,Y-90;
140 Bq/l
for Cs-
137 | No data | 0,00097 | 0,008 | No significant change of the quantity of variable anaphases of larva (2,6%, N=58) in comparison with the control (2,0%) (N=50). | NE | Pechkurenkov,
1978 | | A82 | Fish | Rutilus | Exposure in | Sr- | 5920 Bq/l | No data | 0,00087 | 0,003 | No significant change of the quantity | NE | Pechkurenkov, | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|------------------------|--|--|---|----------|---|----------------|--------------| | | eggs | rutilus
lacustris
Roach | experimental water body. | 90,Y-
90,Cs-
137 | for Sr-
90,Y-90;
140 Bq/l
for Cs-
137 | | | | of variable anaphases of larva (6,2%, N=12) in comparison with the control (5,6%) (N=12). | | 1978 | | A83-1 | Mollusc | Lymnaea
stagnalis L.
Pond snail | Experiments with pond snails from contaminated water body. Probing acute exposure. | Sr-
90,Cs-
137 | 4,4E10+0
5 Bq/l
for Sr-
90;
7,0E+04
Bq/l for
Cs-137 in
water;
5,4E+05
Bq/kg
(bottom)
for Sr-90;
1,3E+06
Bq/kg
(bottom)
for Cs-
137 | 2,2E+07
Bq/kg
(shell),
6,4E+05
Bq/kg
(muscle)f
or Sr-90;
2,7E+04
Bq/kg
(shell),
5,5E+05
Bq/kg
(muscle)
for Cs-
137 | 1,7E-02
Gy/day of
chronic
exposure,
dose from
shell was
not
considere
d. (*). | | Increase of the survival of pond snails after acute probing gamma-exposure 10 Gy in comparison with the control. The survival of irradiated pond snails was 68% in contaminated water body, and 35% in the control (N=25-30). | AD | Fetisov,1993 | | A83-2 | Mollu
sc | Lymnaea
stagnalis L.
Pond snail | Experiments with pond snails from contaminated water body. Probing acute exposure. | Sr-
90,Cs-
137 | 4,4E10+0
5 Bq/l
for Sr-
90;
7,0E+04
Bq/l for
Cs-137 in
water;
5,4E+05
Bq/kg
(bottom)
for Sr-90;
1,3E+06
Bq/kg | 2,2E+07
Bq/kg
(shell),
6,4E+05
Bq/kg
(muscle)f
or Sr-90;
2,7E+04
Bq/kg
(shell),
5,5E+05
Bq/kg
(muscle)
for Cs- | 1,7E-02
Gy/day of
chronic
exposure,
dose from
shell was
not
considere
d. (*). | | Increase of the survival of pond snails after gamma-exposure 50 Gy in comparison with the control. The survival of irradiated pond snails was 38% in contaminated water body, and 18% in the control (N=25-30). | AD | Fetisov,1993 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|----------------------|--|--|---|----------|--|----------------|--------------| | | | | | | (bottom)
for Cs-
137 | 137 | | | | | | | A83-3 | Mollusc | Lymnaea
stagnalis L.
Pond snail | Experiments with pond snails from contaminated water body. Probing acute exposure. | Sr-
90,Cs-
137 | 4,4E10+0
5 Bq/l
for Sr-
90;
7,0E+04
Bq/l for
Cs-137 in
water;
5,4E+05
Bq/kg
(bottom)
for Sr-90;
1,3E+06
Bq/kg
(bottom)
for Cs-
137 | 2,2E+07
Bq/kg
(shell),
6,4E+05
Bq/kg
(muscle)f
or Sr-90;
2,7E+04
Bq/kg
(shell),
5,5E+05
Bq/kg
(muscle)
for Cs-
137 | 1,7E-02
Gy/day of
chronic
exposure,
dose from
shell was
not
considere
d. (*). | | Increase of the survival of pond snails after gamma-exposure 100 Gy in comparison with the control. The survival of irradiated pond snails was 30% in contaminated water body, and 10% in the control (N=25-30). | AD | Fetisov,1993 | | A83-4 | Mollu
sc |
Lymnaea
stagnalis L.
Pond snail | Experiments with pond snails from contaminated water body. Probing acute exposure. | Sr-
90,Cs-
137 | 4,4E10+0 5 Bq/l for Sr- 90; 7,0E+04 Bq/l for Cs-137 in water; 5,4E+05 Bq/kg (bottom) for Sr-90; 1,3E+06 Bq/kg (bottom) for Cs- | 2,2E+07
Bq/kg
(shell),
6,4E+05
Bq/kg
(muscle)f
or Sr-90;
2,7E+04
Bq/kg
(shell),
5,5E+05
Bq/kg
(muscle)
for Cs-
137 | 1,7E-02
Gy/day of
chronic
exposure,
dose from
shell was
not
considere
d. (*). | | Increase of the survival of pond snails after gamma-exposure 200 Gy in comparison with the control. The survival of irradiated pond snails was 39% in contaminated water body, and 10% in the control (N=25-30). | AD | Fetisov,1993 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|--|---|--|---|----------|--|----------------|-----------------------| | A84 | Mollusc | Lymnaea
stagnalis L.
Pond snail | Field study of pond snails from contaminated water body | Sr-
90,Cs-
137 | 137
4,4E10+0
5 Bq/l
for Sr-
90;
7,0E+04
Bq/l for
Cs-137 in
water;
5,4E+05
Bq/kg
(bottom)
for Sr-90;
1,3E+06
Bq/kg
(bottom)
for Cs-
137 | 2,2E+07
Bq/kg
(shell),
6,4E+05
Bq/kg
(muscle)f
or Sr-90;
2,7E+04
Bq/kg
(shell),
5,5E+05
Bq/kg
(muscle)
for Cs-
137 | 1,7E-02
Gy/day of
chronic
exposure,
dose from
shell was
not
considere
d. (*). | | Decrease in the size of shell of pond snails in contaminated water body in comparison with the control. The length of shell was 35,39 cm (28,85-41,93 cm) (N=80) in experiment, and 49,02 cm (44,08-53,96 cm) (N=58) in the control. | MB | Fetisov,1993 | | A85-1 | Fish | Cyprinus
carpio L.
Carp | Field studies in
the Chernobyl
cooling pond,
May 1986. | I-131,
Zr-95,
Ru-103,
Ru-106,
Ba-140,
Ce-141,
Ce-144,
Cs-134,
Cs-137 | 3000-
4000 Bq/l
for every
radionucli
de | No data | 0,001 | No data | No change for the level of chromosomal aberrations on epithelium of eye cornea (3,1 %) in comparison with the control (3,0%). | NE | Pechkurenkov,
1991 | | A85-2 | Fish | Cyprinus
carpio L.
Carp | Field studies in
the Chernobyl
cooling pond,
September
1986. | Zr-95,
Ru-103,
Ru-106,
Ce-141,
Ce-144,
Cs-134,
Cs-137 | 2000-
3000 Bq/l
for every
radionucli
de | 40000-
140000
Bq/kg for
Cs-
137,134 | 0,001 | No data | No change for the level of chromosomal aberrations on epithelium of eye cornea (3,0 %) in comparison with the control (3,0%). | NE | Pechkurenkov,
1991 | | A86-1 | Fish eggs | Blicca
bjoerkna L. | Field studies in the Chernobyl | Cs-134,
Cs-137 | 170 Bq/l
for | No data | 0,0003 | No data | No change for the level of chromosomal aberrations on fish eggs | NE | Pechkurenkov,
1991 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|--|-------------------|-------------------------------------|----------------------------------|--------------------|----------|--|----------------|-----------------------------| | | | Silver bream | cooling pond,
May 1987. | | Cs-
137,134 | | | | (early gastrula) (3,6 %) in comparison with non-contaminated area. | | | | A86-2 | Fish eggs | Blicca
bjoerkna L.
Silver bream | Field studies in
the Chernobyl
cooling pond,
1990. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | No change for the level of chromosomal aberrations on fish eggs (neurula) (3,7 %) in comparison with non-contaminated area. | NE | Pechkurenkov,
1991 | | A86-3 | Fish | Blicca
bjoerkna L.
Silver bream | Field studies in
the Chernobyl
cooling pond,
1987-1988. | Cs-134,
Cs-137 | 3-170
Bq/l for
Cs-
137,134 | No data | 0,0003 | No data | Statistical discrepancy was observed for 3 morphometric parameters of fish which borned before (N=30) and after (N=38) Chernobyl accident by factors of 2,5-6,35 (significance level, 0,05). | MB | Pechkurenkov,
1991 | | A87-1 | Fish eggs | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1989. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | No change for the level of chromosomal aberrations on fish eggs (early gastrula) (5,6 %) in comparison with non-contaminated area. | NE | Pechkurenkov,
1991 | | A87-2 | Fish
eggs | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1989. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | No change in the level of chromosomal aberrations on fish eggs (late gastrula) (5,4 %) in comparison with non-contaminated area. | NE | Pechkurenkov,
1991 | | A87-3 | Fish | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1989. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | No change for the level of chromosomal aberrations on fish larva (4,8 %) in comparison with noncontaminated area. | NE | Pechkurenkov,
1991 | | A87-4 | Fish | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1990. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | Increase of the level of chromosomal aberrations for abnormal embryos (6,1 %) in comparison with norm (3,1%). | CG | Pechkurenkov,
1990, 1991 | | A87-5 | Fish | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1990. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | Increase of the level of chromosomal aberrations for abnormal larva (12,3 %) in comparison with norm (2,8%). | CG | Pechkurenkov,
1990, 1991 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|--|---|-------------------|-----------------------------------|----------------------------|-----------------------|----------|--|----------------|------------------------------| | A87-6 | Fish | Hypophtlmic
hthys
molitrix
Valencienne
s Silver carp | Field studies in
the Chernobyl
cooling pond,
1989-1990. | Cs-134,
Cs-137 | 3-4 Bq/l
for
Cs-
137,134 | No data | 0,0003 | No data | Statistical discrepancy was observed for 8 morphometric parameters of fish which borned before (N=7) and after (N=38) Chernobyl accident by factors of 2,89-9,5 (significance level, 0,05). | MB | Pechkurenkov,
1991 | | A88 | Fish | Cyprinus
carpio L.
Carp | Field studies in
the Ural
contaminated
water body. | Sr-90,
Y-90 | No data | No data | 0,005 | No data | No statistical discrepancy for morphometric parameters on 6 generations of carp. | NE | Pechkurenkov,
1991 | | A89-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (25,8 %, N=186) in comparison with the control (83,7%, N=467) by factor of 3,2. Time of external exposure was 20 minutes after fertilization. | МТ | Kulikov,
1970a,1970c,1975 | | A89-2 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (9,8 %, N=162) in comparison with the control (83,7%, N=467) by factor of 8,5. Time of external exposure was
30 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (0 %, N=165) in comparison with the control (83,7%, N=467). Time of external exposure was 40 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (6,6 %, N=136) in comparison with the control (83,7%, N=467) by factor of 12,7. Time of external exposure was 50 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (44,1%, N=136) in comparison with the control (83,7%, | MT | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | early stages of development in experiment. | | | | | | N=467) by factor of 1,9. Time of external exposure was 60 minutes after fertilization. | | | | A89-6 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (65,8 %, N=184) in comparison with the control (83,7%, N=467) by factor of 1,3. Time of external exposure was 70 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-7 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (55,6 %, N=167) in comparison with the control (83,7%, N=467) by factor of 1,5. Time of external exposure was 80 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-8 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (55,9 %, N=143) in comparison with the control (83,7%, N=467) by factor of 1,5. Time of external exposure was 90 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-9 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (36,8 %, N=138) in comparison with the control (83,7%, N=467) by factor of 2,3. Time of external exposure was 100 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-10 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (33,7 %, N=151) in comparison with the control (83,7%, N=467) by factor of 2,5. Time of external exposure was 110 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-11 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (27,5 %, N=156) in comparison with the control (83,7%, | MT | Kulikov,
1970a,1970c,1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | early stages of development in experiment. | | | | | | N=467) by factor of 3,0. Time of external exposure was 120 minutes after fertilization. | | | | A89-12 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (2,4 %, N=167) in comparison with the control (83,7%, N=467) by factor of 34,9. Time of external exposure was 130 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-13 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (15,4 %, N=162) in comparison with the control (83,7%, N=467) by factor of 5,4. Time of external exposure was 140 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-14 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (74,2 %, N=171) in comparison with the control (83,7%, N=467). Time of external exposure was 150 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-15 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (71,2 %, N=167) in comparison with the control (83,7%, N=467). Time of external exposure was 160 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-16 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (59,8 %, N=147) in comparison with the control (83,7%, N=467) by factor of 1,4. Time of external exposure was 170 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-17 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (56,5 %, N=138) in comparison with the control (83,7%, | МТ | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|--|----------------|------------------------------| | | | | early stages of development in experiment. | | | | | | N=467) by factor of 1,5. Time of external exposure was 180 minutes after fertilization. | | | | A89-18 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (46,0 %, N=139) in comparison with the control (83,7%, N=467) by factor of 1,8. Time of external exposure was 190 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-19 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (13,2 %, N=113) in comparison with the control (83,7%, N=467) by factor of 6,3. Time of external exposure was 200 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A89-20 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the survival of irradiated embryos (2,5 %, N=120) in comparison with the control (83,7%, N=467) by factor of 33,5. Time of external exposure was 210 minutes after fertilization. | MT | Kulikov,
1970a,1970c,1975 | | A90-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs
in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (79,1 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0%) by factor of 4,9. Time of external exposure was 20 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (87,5 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | | | | | | | control (16,0 %) by factor of 5,5.
Time of external exposure was 30 minutes after fertilization. | | | | A90-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (88,8 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 5,6. Time of external exposure was 50 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (65,0 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 4,1. Time of external exposure was 60 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (48,7 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 3,0. Time of external exposure was 70 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-6 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (62,3 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | | | | | | | control (16,0 %) by factor of 3,9.
Time of external exposure was 80 minutes after fertilization. | | | | A90-7 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (68,7 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 4,3. Time of external exposure was 90 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-8 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (88,2 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 5,5. Time of external exposure was 100 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-9 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (78,4 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 4,9. Time of external exposure was 110 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-10 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (86,0 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | | | | | | | control (16,0 %) by factor of 5,4.
Time of external exposure was 120 minutes after fertilization. | | | | A90-11 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (100,0 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 6,3. Time of external exposure was 130 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-12 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (48,0 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 3,0. Time of external exposure was 140 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-13 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (51,9 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 3,2. Time of external exposure was 150 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-14 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (33,6 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart
and blood vessels) in comparison with the | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|--|----------------|------------------------------| | | | | | | | | | | control (16,0 %) by factor of 2,1.
Time of external exposure was 160 minutes after fertilization. | | | | A90-15 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (78,4 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 4,9. Time of external exposure was 170 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-16 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (84,6 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 5,3. Time of external exposure was 180 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-17 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (82,8 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 5,2. Time of external exposure was 190 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A90-18 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (73,3 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | | | | | | | control (16,0 %) by factor of 4,6.
Time of external exposure was 200
minutes after fertilization. | | | | A90-19 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Increase of the abnormal irradiated embryos (100,0 %) with different morphological defects (spinal curvature, underdevelopment of caudal fin, defects in structure of heart and blood vessels) in comparison with the control (16,0 %) by factor of 6,3. Time of external exposure was 210 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (4,1 (3,95-4,25) days) in comparison with the control (5,8 (5,46-6,14) days) on 1,7 days (29 %). Time of external exposure was 20 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,2 (3,12-3,28) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,6 days (45%). Time of external exposure was 30 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (2,91 (2,81-3,01) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,89 days (50 %). Time of external exposure was 50 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time
period of irradiated embryos before
hatch from fish eggs (4,01 (3,77-4,25) | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|---|----------------|------------------------------| | | | | early stages of
development
in experiment. | | | | | | days) in comparison with the control (5,8 (5,46-6,14) days) on 1,79 days (31 %). Time of external exposure was 60 minutes after fertilization. | | | | A91-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (4,33 (4,03-4,63) days) in comparison with the control (5,8 (5,46-6,14) days) on 1,47 days (25 %). Time of external exposure was 70 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-6 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | No difference for the average life time period of irradiated embryos before hatch from fish eggs (5,41 (5,21-5,61) days) in comparison with the control (5,8 (5,46-6,14) days). Time of external exposure was 80 minutes after fertilization. | NE | Kulikov,
1970a,1970c,1975 | | A91-7 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,4 (3,15-3,65) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,4 days (41%). Time of external exposure was 90 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-8 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,2 (3,0-3,4) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,6 days (45%). Time of external exposure was 100 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-9 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,72 (3,52-3,92) days) in comparison with the control | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------
-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|--|----------------|------------------------------| | | | | development in experiment. | | | | | | (5,8 (5,46-6,14) days) on 2,08 days (36 %). Time of external exposure was 110 minutes after fertilization. | | | | A91-10 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,6 (3,46-3,74) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,2 days (38 %). Time of external exposure was 120 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-11 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (2,6 (2,56-2,66) days) in comparison with the control (5,8 (5,46-6,14) days) on 3,2 days (55%). Time of external exposure was 130 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-12 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,03 (2,93-3,13) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,77 days (48 %). Time of external exposure was 140 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-13 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (4,59 (4,3-4,88) days) in comparison with the control (5,8 (5,46-6,14) days) on 1,21 days (21 %). Time of external exposure was 150 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-14 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,59 (3,29-3,89) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,21 days | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|---------|-------------------------------|----------------------------|-----------------------|----------|--|----------------|------------------------------| | | | | in experiment. | | | | | | (38 %). Time of external exposure was 160 minutes after fertilization. | | | | A91-15 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,39 (3,19-3,59) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,41 days (42 %). Time of external exposure was 170 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-16 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,5 (3,3-3,7) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,3 days (40 %). Time of external exposure was 180 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-17 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | No difference for the average life time period of irradiated embryos before hatch from fish eggs (5,49 (5,29-5,69) days) in comparison with the control (5,8 (5,46-6,14) days). Time of external exposure was 190 minutes after fertilization. | NE | Kulikov,
1970a,1970c,1975 | | A91-18 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (3,03 (2,93-3,13) days) in comparison with the control (5,8 (5,46-6,14) days) on 2,77 days (48 %). Time of external exposure was 200 minutes after fertilization. | REPR | Kulikov,
1970a,1970c,1975 | | A91-19 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,26
Gy/minut
e | 2 Gy | Decrease of the average life time period of irradiated embryos before hatch from fish eggs (2,36 (2,26-2,46) days) in comparison with the control (5,8 (5,46-6,14) days) on 3,44 days (59 %). Time of external exposure | REPR | Kulikov,
1970a,1970c,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------------|------------------------|----------|--|----------------|-----------------------------| | | | | | | | | | | was 210 minutes after fertilization. | | | | A92-1 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the survival of irradiated embryos (44,8 %, N=491) in comparison with the control (86,5 %, N=1113) by factor of 1,9. Time of external exposure was 15 minutes after fertilization. Stage of development under exposure: before dividing. | MT | Kulikov,
1969,1970b,1975 | | A92-2 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (80,2 %, N=442) in comparison with the control (86,5 %, N=1113). Time of external exposure was 65 minutes after fertilization. Stage of development under exposure: 2 blastomeres. | NE | Kulikov,
1969,1970b,1975 | | A92-3 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the survival of irradiated embryos (75,9 %, N=398) in comparison with the control (86,5 %, N=1113) on 10,6 %. Time of external exposure was 80 minutes after fertilization. Stage of development under exposure: 4 blastomeres. | MT | Kulikov,
1969,1970b,1975 | | A92-4 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (88,1 %, N=578) in comparison with the control (86,5 %, N=1113). Time of external exposure was 95 minutes after fertilization. Stage of development under exposure: 8 blastomeres. | NE | Kulikov,
1969,1970b,1975 | | A92-5 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (84,9 %, N=680) in comparison with the control (86,5 %, N=1113). Time of external exposure was 125 minutes after fertilization. Stage of development under exposure: 16 blastomeres. | NE | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-----------------------------------
--|---------|-------------------------------|----------------------------|------------------------|----------|--|----------------|---| | A92-6 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (81,5 %, N=572) in comparison with the control (86,5 %, N=1113). Time of external exposure was 155 minutes after fertilization. Stage of development under exposure: 32 blastomeres. | NE | Kulikov,
1969,1970b,1975 | | A92-7 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (85,3 %, N=604) in comparison with the control (86,5 %, N=1113). Time of external exposure was 4 h 50 min after fertilization. Stage of development under exposure: middle blastula. | NE | Kulikov,
1969,1970b,1975 | | A92-8 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (84,7 %, N=708) in comparison with the control (86,5 %, N=1113). Time of external exposure was 9 h 20 min after fertilization. Stage of development under exposure: beginning of gastrula. | NE | Kulikov,
1969,1970b,1975 | | A92-9 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (85,2 %, N=683) in comparison with the control (86,5 %, N=1113). Time of external exposure was 10 h 50 min after fertilization. Stage of development under exposure: middle gastrula. | NE | Kulikov,
1969,1970b,1975 | | A92-10 | Fish eggs | Tinca tinca L. Tench Tinca tinca | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment.
Gamma- | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (85,5 %, N=608) in comparison with the control (86,5 %, N=1113). Time of external exposure was 12 h 20 min after fertilization. Stage of development under exposure: end of gastrula. No significant change for the survival | NE
NE | Kulikov,
1969,1970b,1975
Kulikov, | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|--|----------------|-----------------------------| | | eggs | L. Tench | exposure of impregnated fish eggs in early stages of development in experiment. | | | | Gy/minut
e | | of irradiated embryos (82,6 %, N=608) in comparison with the control (86,5 %, N=1113). Time of external exposure was 21 h 20 min after fertilization. Stage of development under exposure: beginning of segmentation. | | 1969,1970b,1975 | | A92-12 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (86,9 %, N=692) in comparison with the control (86,5 %, N=1113). Time of external exposure was 27 h 40 min after fertilization. Stage of development under exposure: beginning of motion. | NE | Kulikov,
1969,1970b,1975 | | A92-13 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the survival of irradiated embryos (85,0 %, N=678) in comparison with the control (86,5 %, N=1113). Time of external exposure was 45 h 20 min after fertilization. Stage of development under exposure: beginning of hatching eggs. | NE | Kulikov,
1969,1970b,1975 | | A93-1 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (100 %) with different morphological defects in comparison with the control (7,7 %) by factor of 13. Time of external exposure was 15 minutes after fertilization. Stage of development under exposure: before cleavage. | REPR | Kulikov,
1969,1970b,1975 | | A93-2 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (30 %) with different morphological defects in comparison with the control (7,7 %) by factor of 3,9. Time of external exposure was 65 minutes after fertilization. Stage of | REPR | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|--|----------------|-----------------------------| | | | | in experiment. | | | | | | development under exposure: 2 blastomeres. | | | | A93-3 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (70 %) with different morphological defects in comparison with the control (7,7 %) by factor of 9,1. Time of external exposure was 80 minutes after fertilization. Stage of development under exposure: 4 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A93-4 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (31,4 %) with different morphological defects in comparison with the control (7,7 %) by factor of 4,1. Time of external exposure: 80 minutes after fertilization. Stage of development under exposure: 8 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A93-5 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (45,4 %) with different morphological defects in comparison with the control (7,7 %) by factor of 5,9. Time of external exposure: 125 minutes after fertilization. Stage of development under exposure: 16 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A93-6 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (28,9 %) with different morphological defects in comparison with the control (7,7 %) by factor of 3,8. Time of external exposure: 155 minutes after fertilization. Stage of development at the time of exposure: 32 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A93-7 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of | Co-60 | | | 0,245
Gy/minut | 2,5 Gy | Increase of the abnormal irradiated embryos (54 %) with different | REPR | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------
---|----------------|-----------------------------| | | | | impregnated
fish eggs in
early stages of
development
in experiment. | | | | е | | morphological defects in comparison with the control (7,7 %) by factor of 7,0. Time of external exposure: 4 h 50 min after fertilization. Stage of development at the time of exposure: middle blastula. | | | | A93-8 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the abnormal irradiated embryos (10 %) with different morphological defects in comparison with the control (7,7 %). Time of external exposure was 9 h 20 min after fertilization. Stage of development under exposure: beginning of gastrula. | NE | Kulikov,
1969,1970b,1975 | | A93-9 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (18,6 %) with different morphological defects in comparison with the control (7,7 %) by factor of 2,4. Time of external exposure was 10 h 50 min after fertilization. Stage of development under exposure: middle gastrula. | REPR | Kulikov,
1969,1970b,1975 | | A93-10 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the abnormal irradiated embryos (10 %) with different morphological defects in comparison with the control (9,6 %). Time of external exposure: 12 h 20 min after fertilization. Stage of development under exposure: end of gastrula. | NE | Kulikov,
1969,1970b,1975 | | A93-11 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (15,7 %) with different morphological defects in comparison with the control (7,7 %) by factor of 2,0. Time of external exposure: 11 h 20 min after fertilization. Stage of | REPR | Kulikov,
1969,1970b,1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|-----------------------------| | | | | in experiment. | | | | | | development under exposure: beginning of segmentation. | | | | A93-12 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (22,4 %) with different morphological defects in comparison with the control (7,7 %) by factor of 2,9. Time of external exposure: 27 h 40 min after fertilization. Stage of development under exposure: beginning of motion. | REPR | Kulikov,
1969,1970b,1975 | | A93-13 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the abnormal irradiated embryos (14,3 %) with different morphological defects in comparison with the control (7,7 %) by factor of 1,9. Time of external exposure: 45 h 20 min after fertilization. Stage of development under exposure: beginning of hatching eggs. | REPR | Kulikov,
1969,1970b,1975 | | A94-1 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (100 %) with different morphological defects in comparison with the control (20,1 %) by factor of 5. Time of external exposure: 15 minutes after fertilization. Stage of development under exposure: before cleavage. | REPR | Kulikov,
1969,1970b,1975 | | A94-2 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (44,1 %) with different morphological defects in comparison with the control (20,1 %) by factor of 2,2. Time of external exposure: 65 minutes after fertilization. Stage of development under exposure: 2 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A94-3 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of | Co-60 | | | 0,245
Gy/minut | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (77,1 %) with | REPR | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|-----------------------------| | | | | impregnated
fish eggs in
early stages of
development
in experiment. | | | | е | | different morphological defects in comparison with the control (20,1 %) by factor of 3,8. Time of external exposure: 80 minutes after fertilization. Stage of development under exposure: 4 blastomeres. | | | | A94-4 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (39,6 %) with different morphological defects in comparison with the control (20,1 %) by factor of 2,0. Time of external exposure: 95 minutes after fertilization. Stage of development under exposure: 8 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A94-5 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (53,6 %) with different morphological defects in comparison with the control (20,1 %) by factor of 2,7. Time of external exposure: 125 minutes after fertilization. Stage of development under exposure: 16 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A94-6 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (41,9 %) with different morphological defects in comparison with the control (20,1 %) by factor of 2,1. Time of external exposure: 155 minutes after fertilization. Stage of development under exposure: 32 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A94-7 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (60,7 %) with different morphological defects in comparison with the control (20,1 %) by factor of 3,0. Time of external exposure was 4 h 50 min after | REPR | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|-----------------------------| | | | | in experiment. | | | | | | fertilization. Stage of development under exposure: middle blastula. | | | | A94-8 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure
of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the dead and abnormal irradiated embryos (23,7%) with different morphological defects in comparison with the control (20,1%). Time of external exposure was 9 h 20 min after fertilization. Stage of development under exposure: beginning of gastrula. | NE | Kulikov,
1969,1970b,1975 | | A94-9 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (31,0 %) with different morphological defects in comparison with the control (20,1 %) by factor of 1,5. Time of external exposure was 10 h 50 min after fertilization. Stage of development under exposure: middle gastrula. | REPR | Kulikov,
1969,1970b,1975 | | A94-10 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the dead and abnormal irradiated embryos (22,8 %) with different morphological defects in comparison with the control (20,1 %). Time of external exposure was 12 h 20 min after fertilization. Stage of development under exposure: end of gastrula. | NE | Kulikov,
1969,1970b,1975 | | A94-11 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (30,3 %) with different morphological defects in comparison with the control (20,1 %) by factor of 1,5. Time of external exposure was 21 h 20 min after fertilization. Stage of development under exposure: beginning of segmentation. | REPR | Kulikov,
1969,1970b,1975 | | A94-12 | Fish | Tinca tinca | Gamma- | Co-60 | | | 0,245 | 2,5 Gy | segmentation. Increase of the dead and abnormal | REPR | Kulikov, | | Identifi cation NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|--|----------------|-----------------------------| | | eggs | L. Tench | exposure of impregnated fish eggs in early stages of development in experiment. | | | | Gy/minut
e | | irradiated embryos (31,8 %) with different morphological defects in comparison with the control (20,1 %) by factor of 1,6. Time of external exposure was 27 h 40 min after fertilization. Stage of development under exposure: beginning of motion. | | 1969,1970b,1975 | | A94-13 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the dead and abnormal irradiated embryos (27,4 %) with different morphological defects in comparison with the control (20,1 %) by factor of 1,4. Time of external exposure was 45 h 20 min after fertilization. Stage of development under exposure: beginning of hatching eggs. | REPR | Kulikov,
1969,1970b,1975 | | A95-1 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (2,76 (2,54-2,98) days) in comparison with the control (15,32 (15,21-15,43 days) on 12,56 days. Stage of development of fish eggs under exposure: before cleavage (dividing). | REPR | Kulikov,
1969,1970b,1975 | | A95-2 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (10,19 (9,83-10,55) days) in comparison with the control (15,32 (15,21-15,43 days) on 5,13 days. Stage of development of fish eggs under exposure: 2 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A95-3 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (8,2 (7,53-8,87) days) in comparison with the control (15,32 (15,21-15,43 days) on 7,12 days. Stage of development of fish eggs under | REPR | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|--|----------------|-----------------------------| | | | | in experiment. | | | | | | exposure: 4 blastomeres. | | | | A95-4 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (11,22 (10,8-11,64) days) in comparison with the control (15,32 (15,21-15,43 days) on 4,1 days. Exposure at the stage of development of fish eggs: 8 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A95-5 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (12,23 (11,72-12,74) days) in comparison with the control (15,32 (15,21-15,43 days) on 3,09 days. Stage of development of fish eggs under exposure: 16 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A95-6 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (12,16 (11,67-12,65) days) in comparison with the control (15,32 (15,21-15,43 days) on 3,16 days. Stage of development of fish eggs under exposure: 32 blastomeres. | REPR | Kulikov,
1969,1970b,1975 | | A95-7 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (12,07 (11,52-12,62) days) in comparison with the control (15,32 (15,21-15,43 days) on 3,25 days. Stage of development of fish eggs under exposure: middle blastula. | REPR | Kulikov,
1969,1970b,1975 | | A95-8 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Decrease of the average life time of larva hatched from irradiated fish eggs (14,3 (13,9-14,7) days) in comparison with the control (15,32 (15,21-15,43 days) on 1,02 days. Stage of development of fish eggs under exposure: beginning of gastrula. | REPR | Kulikov,
1969,1970b,1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|-----------------------------| | A95-9 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the average life time of larva hatched from irradiated fish eggs (16,94 (16,76-17,12) days) in comparison with the control (15,32 (15,21-15,43 days) on 1,62 days. Stage of development of fish eggs under exposure: middle gastrula. | REPR | Kulikov,
1969,1970b,1975 | | A95-10 | Fish
eggs | Tinca
tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | Increase of the average life time of larva hatched from irradiated fish eggs (17,0 (16,79-17,21) days) in comparison with the control (15,32 (15,21-15,43 days) on 1,68 days. Stage of development of fish eggs under exposure: end of gastrula. | REPR | Kulikov,
1969,1970b,1975 | | A95-11 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the average life time of larva hatched from irradiated fish eggs (15,2 (14,98-15,42) days) in comparison with the control (15,32 (15,21-15,43 days). Stage of development of fish eggs under exposure: beginning of segmentation. | NE | Kulikov,
1969,1970b,1975 | | A95-12 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the average life time of larva hatched from irradiated fish eggs (14,82 (14,32-15,32) days) in comparison with the control (15,32 (15,21-15,43 days). Stage of development of fish eggs under exposure: beginning of motion. | NE | Kulikov,
1969,1970b,1975 | | A95-13 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | No significant change for the average life time of larva hatched from irradiated fish eggs (14,95 (14,7-15,2) days) in comparison with the control (15,32 (15,21-15,43 days). Stage of development of fish eggs under exposure: beginning of hatching | NE | Kulikov,
1969,1970b,1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|------------------------|----------|---|----------------|---| | A95-14 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | 0,245
Gy/minut
e | 2,5 Gy | eggs. Increase of the average life time of larva hatched from irradiated fish eggs (15,97 (15,83-16,11) days) in comparison with the control (15,32 (15,21-15,43 days) on 0,65 day. Stage of development of fish eggs under exposure: immediately after hatching eggs. | REPR | Kulikov,
1969,1970b,1975 | | A96-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (42 %, N=169) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 26,25. Stage of development of eggs under exposure: before cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (18,2 %, N=853) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 11,4. Stage of development of eggs under exposure: 2 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (22,5 %, N=243) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 14,1. Stage of development of eggs under exposure: 2-4 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (42,5 %, N=447) with different morphological defects in | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | | | | mollusca eggs
in different
stages of
development
in experiment. | | | | | | comparison with the control (1,6 %, N=1646) by factor of 26,6. Stage of development of eggs under exposure: 4 blastomeres. | | | | A96-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (47,4 %, N=157) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 29,6. Stage of development of eggs under exposure: 4-8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (27,9 %, N=346) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 17,4. Stage of development of eggs under exposure: 8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (11,1 %, N=252) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 6,9. Stage of development of eggs under exposure: 32 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-8 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development | Co-60 | | | 0,36
Gy/min | 3 Gy | No significant change for the abnormal irradiated embryos (1,5 %, N=132) with different morphological defects in comparison with the control (1,6 %, N=1646). Stage of development of eggs under exposure: 64 blastomeres. | NE | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | A96-9 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | in experiment. Gamma- exposure of impregnated mollusca eggs in different stages of development in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (19,3 %, N=592) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 12,1. Stage of development of eggs under exposure: end of cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-10 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (12,7 %, N=619) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 7,9. Stage of development of eggs
under exposure: early gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-11 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (13,1 %, N=801) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 8,2. Stage of development of eggs under exposure: middle gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-12 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (13,6 %, N=850) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 8,5. Stage of development of eggs under exposure: late gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A96-13 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (3,9 %, N=203) with different morphological defects in | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | | | | mollusca eggs
in different
stages of
development
in experiment. | | | | | | comparison with the control (1,6 %, N=1646) by factor of 2,1. Stage of development of eggs under exposure: trochophore. | | | | A96-14 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal irradiated embryos (3,1 %, N=420) with different morphological defects in comparison with the control (1,6 %, N=1646) by factor of 1,9. Stage of development of eggs under exposure: veliger. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (13,6 %, N=169) in comparison with the control (1,4 %, N=1646) by factor of 9,7. Stage of development of eggs under exposure: before cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (7,8 %, N=853) in comparison with the control (1,4 %, N=1646) by factor of 5,6. Stage of development of eggs under exposure: 2 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (7,2 %, N=243) in comparison with the control (1,4 %, N=1646) by factor of 5,1. Stage of development of eggs under exposure: 2-4 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | A97-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | in experiment. Gamma- exposure of impregnated mollusca eggs in different stages of development in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (9,4 %, N=447) in comparison with the control (1,4 %, N=1646) by factor of 6,7. Stage of development of eggs under exposure: 4 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (13,1 %, N=157) defects in comparison with the control (1,4 %, N=1646) by factor of 9,4. Stage of development of eggs under exposure: 4-8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (7,5 %, N=346) in comparison with the control (1,4 %, N=1646) by factor of 5,4. Stage of development of eggs under exposure: 8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (3,7 %, N=252) in comparison with the control (1,4 %, N=1646) by factor of 2,6. Stage of development of eggs under exposure: 32 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-8 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (3,1 %, N=132) in comparison with the control (1,4 %, | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|---| | | | | mollusca eggs
in different
stages of
development
in experiment. | | | | | | N=1646) by factor of 2,2. Stage of development of eggs under exposure: 64 blastomeres. | | | | A97-9 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (4,7 %, N=592) in comparison with the control (1,4 %, N=1646) by factor of 3,4. Stage of development of eggs under exposure: end of cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-10 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (4,6 %, N=619) in comparison with the control (1,4 %, N=1646) by factor of 3,3. Stage of development of eggs under exposure: early gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-11 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (3,9 %, N=801) in comparison with the control (1,4 %, N=1646) by factor of 2,8. Stage of development of eggs under exposure: middle gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-12 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (2,4 %, N=850) in comparison with the
control (1,4 %, N=1646) by factor of 1,7. Stage of development of eggs under exposure: late gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | A97-13 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | in experiment. Gamma- exposure of impregnated mollusca eggs in different stages of development in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the dead irradiated embryos (4,9 %, N=203) in comparison with the control (1,4 %, N=1646) by factor of 3,5. Stage of development of eggs under exposure: trochophore. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A97-14 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | No significant change for the dead irradiated embryos (1,2 %, N=420) in comparison with the control (1,4 %, N=1646). Stage of development of eggs under exposure: veliger. | NE | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (55,6 (48,1-63,1) %, N=169) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 18,5. Stage of development of eggs under exposure: before cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (26,1 (23,2-29) %, N=853) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 8,7. Stage of development of eggs under exposure: 2 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (29,7 (24,2-35,2) %, N=243) in comparison with the | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---| | | | | mollusca eggs
in different
stages of
development
in experiment. | | | | | | control (3,0 (2,2-3,8) %, N=1646) by factor of 9,9. Stage of development of eggs under exposure: 2-4 blastomeres. | | | | A98-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (51,9 (47,7-56,1) %, N=447) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 17,3. Stage of development of eggs under exposure: 4 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (60,5 (52,7-68,3) %, N=157) defects in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 20,2. Stage of development of eggs under exposure: 4-8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (35,5 (31,3-39,7) %, N=346) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 11,8. Stage of development of eggs under exposure: 8 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (14,8 (11-18,6) %, N=252) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 4,9. Stage of development of eggs under exposure: 32 blastomeres. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|---| | A98-8 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | in experiment. Gamma- exposure of impregnated mollusca eggs in different stages of development in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | No significant change for the abnormal and dead irradiated embryos (4,6 (1,7-7,5) %, N=132) in comparison with the control (3,0 (2,2-3,8) %, N=1646). Stage of development of eggs under exposure: 64 blastomeres. | NE | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-9 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (24,0 (21,2-26,8) %, N=592) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 8. Stage of development of eggs under exposure: end of cleavage. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-10 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (17,3 (14,4-20,2) %, N=619) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 5,8. Stage of development of eggs under exposure: early gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-11 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (17,0 (14,1-19,9) %, N=801) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 5,7. Stage of development of eggs under exposure: middle gastrula. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-12 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (16,0 (13,2-18,8) %, N=850) in comparison with the | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------
---|----------------|---| | | | | mollusca eggs
in different
stages of
development
in experiment. | | | | | | control (3,0 (2,2-3,8) %, N=1646) by factor of 5,3. Stage of development of eggs under exposure: late gastrula. | | | | A98-13 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | Increase of the abnormal and dead irradiated embryos (8,8 (6,7-10,9) %, N=203) in comparison with the control (3,0 (2,2-3,8) %, N=1646) by factor of 2,9. Stage of development of eggs under exposure: trochophore. | REPR | Kulikov, Famelis,
1970; Kulikov,
1975 | | A98-14 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in different
stages of
development
in experiment. | Co-60 | | | 0,36
Gy/min | 3 Gy | No significant change for the abnormal and dead irradiated embryos (4,3 (2,9-5,7) %, N=420) in comparison with the control (3,0 (2,2-3,8) %, N=1646). Stage of development of eggs under exposure: veliger. | NE | Kulikov, Famelis,
1970; Kulikov,
1975 | | A99-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 0,15 Gy | No significant change for the survival of irradiated embryos (96,5 %, N=1066) in comparison with the control (95,0 %, N=1352). Stage of development under exposure: 2-4 blastomeres. | NE | Kulikov, 1975 | | A99-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 1,5 Gy | No significant change for the survival of irradiated embryos (92,4 %, N=687) in comparison with the control (95,0 %, N=1352). Stage of development under exposure: 2-4 blastomeres. | NE | Kulikov, 1975 | | A99-3 | Mollu | Lymnaea | Gamma- | Co-60 | | | | 3,0 Gy | Decrease of the survival of irradiated | MT | Kulikov, 1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---------------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---------------| | | sc's
eggs | stagnalis L.
Pond snail | exposure of impregnated mollusca eggs in early stage of cleavage in experiment. | | | | | | embryos (69,9 %, N=299) in comparison with the control (95,0 %, N=1352) on 25,1 %. Stage of development under exposure: 2-4 blastomeres. | | | | A99-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 6,0 Gy | Decrease of the survival of irradiated embryos (25,3 %, N=280) in comparison with the control (95,0 %, N=1352) on 69,7 %. Stage of development under exposure: 2-4 blastomeres. | МТ | Kulikov, 1975 | | A99-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 12,0 Gy | Decrease of the survival of irradiated embryos (12,7 %, N=370) in comparison with the control (95,0 %, N=1352) on 82,3 %. Stage of development under exposure: 2-4 blastomeres. | МТ | Kulikov, 1975 | | A99-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 50,0 Gy | No survival of irradiated embryos (0 %, N=450). Exposure at the stage of development: 2-4 blastomeres. | МТ | Kulikov, 1975 | | A100-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 0,15 Gy | No significant change for the abnormal irradiated embryos (0,2 %, N=1029) in comparison with the control (0,15 %, N=1305). Stage of development under exposure: 2-4 blastomeres. | NE | Kulikov, 1975 | | A100-2 | Mollu
sc's | Lymnaea
stagnalis L. | Gamma-
exposure of | Co-60 | | | | 1,5 Gy | Increase of the abnormal irradiated embryos (1,6 %, N=635) in | REPR | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---------------| | | eggs | Pond snail | impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | | | | | | comparison with the control (0,15 %, N=1305) by factor of 10,7. Stage of development under exposure: 2-4 blastomeres. | | | | A100-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 3,0 Gy | Increase of abnormalities in the irradiated embryos (24,4 %, N=209) in comparison with the control (0,15 %, N=1305) by factor of 163. Exposure at the stage of development: 2-4 blastomeres. | REPR | Kulikov, 1975 | | A100-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 6,0 Gy | Increase of abnormalities in the irradiated embryos (36,6 %, N=71) in comparison with the control (0,15 %, N=1305) by factor of 244. Exposure at the stage of development: 2-4 blastomeres. | REPR | Kulikov, 1975 | | A100-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in early stage
of cleavage in
experiment. | Co-60 | | | | 12,0 Gy | Increase of abnormalities in the irradiated embryos (80,9 %, N=47) in comparison with the control (0,15 %, N=1305) by factor of 539. Exposure at the stage of development: 2-4 blastomeres. | REPR | Kulikov, 1975 | | A101-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 0,15 Gy | No significant change for the survival of irradiated embryos (98,6 %, N=498) in comparison with the control (97,2 %, N=466). Stage of development under exposure: embryonic motor system. | NE | Kulikov, 1975 | | A101-2 | Mollu
sc's | Lymnaea
stagnalis L. | Gamma-
exposure of | Co-60 | | | | 1,5 Gy | No significant change for the survival of irradiated embryos (97,5 | NE | Kulikov, 1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------------|--------------------|----------|---|----------------|---------------| | | eggs | Pond snail | impregnated mollusca eggs in stage of embryonic motor system in experiment. | | | | | | %, N=458) in comparison with the control (97,2 %, N=466). Exposure at the stage of development: embryonic motor system. | | | | A101-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 3,0 Gy | No significant change for the survival of irradiated embryos (98,0 %, N=471) in comparison with the control (97,2 %, N=466). Exposure at the stage of development: embryonic motor system. | NE | Kulikov, 1975 | | A101-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 6,0 Gy | No significant change for the survival of irradiated embryos (98,5 %, N=494) in comparison with the control (97,2 %, N=466). Exposure at the stage of development: embryonic motor system. | NE | Kulikov, 1975 | | A101-5 | Mollu
sc's
eggs |
Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 12,0 Gy | Decrease of the survival of irradiated embryos (1,5 %, N=580) in comparison with the control (97,2 %, N=466) by factor of 64,8. Exposure at the stage of development: embryonic motor system. | MT | Kulikov, 1975 | | A101-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic | Co-60 | | | | 15,0 Gy | Decrease of the survival of irradiated embryos (0 %, N=480) in comparison with the control (97,2 %, N=466). Stage of development under exposure: embryonic motor system. | MT | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---------------| | A101-7 | Mollu | Lymnaea | motor system in experiment. Gamma- | Co-60 | | | | 50,0 Gy | Decrease of the survival of irradiated | MT | Kulikov, 1975 | | | sc's
eggs | stagnalis L.
Pond snail | exposure of impregnated mollusca eggs in stage of embryonic motor system in experiment. | | | | | | embryos (0 %, N=540) in comparison with the control (97,2 %, N=466). Exposure at the stage of development: embryonic motor system. | | | | A102-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 0,15 Gy | No significant change for the abnormal irradiated embryos (0 %, N=490) in comparison with the control (0 %, N=453). Exposure at the stage of development: embryonic motor system. | NE | Kulikov, 1975 | | A102-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 1,5 Gy | No significant change for the abnormal irradiated embryos (0 %, N=446) in comparison with the control (0 %, N=453). Exposure at the stage of development: embryonic motor system. | NE | Kulikov, 1975 | | A102-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 3,0 Gy | No significant change for the abnormal irradiated embryos (0,4 %, N=463) in comparison with the control (0 %, N=453). Stage of development under exposure: embryonic motor system. | NE | Kulikov, 1975 | | A102-4 | Mollu
sc's | Lymnaea
stagnalis L. | Gamma-
exposure of | Co-60 | | | | 6,0 Gy | No significant change for the abnormal irradiated embryos (0,4 %, | NE | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---------------| | | eggs | Pond snail | impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | | | | | | N=483) in comparison with the control (0 %, N=453). Stage of development under exposure: embryonic motor system. | | | | A102-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
embryonic
motor system
in experiment. | Co-60 | | | | 12,0 Gy | Increase of the abnormal irradiated embryos (33,3 %, N=9) in comparison with the control (0 %, N=453). Exposure at the stage of development: embryonic motor system. | REPR | Kulikov, 1975 | | A103-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 0,15 Gy | No significant change for the survival of irradiated embryos (98,0 %, N=488) in comparison with the control (97,7 %, N=707). Stage of development: beginning of shell forming. | NE | Kulikov, 1975 | | A103-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 1,5 Gy | No significant change for the survival of irradiated embryos (96,0 %, N=556) in comparison with the control (97,7 %, N=707). Exposure at the stage of development: beginning of shell forming. | NE | Kulikov, 1975 | | A103-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of | Co-60 | | | | 3,0 Gy | No significant change for the survival of irradiated embryos (95,0 %, N=568) in comparison with the control (97,7 %, N=707). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|---------------| | | | | shell forming in experiment. | | | | | | | | | | A103-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 6,0 Gy | No significant change for the survival of irradiated embryos (97,6 %, N=493) in comparison with the control (97,7 %, N=707). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | A103-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 12,0 Gy | No significant change for the survival of irradiated embryos (95,5 %, N=581) in comparison with the control (97,7 %, N=707). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | A103-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 15,0 Gy | Decrease of the survival of irradiated embryos (61,2 %, N=430) in comparison with the control (97,7 %, N=707) by factor of 1,6. Stage of development: beginning of shell forming. | MT | Kulikov, 1975 | | A103-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 50,0 Gy | Decrease of the survival of irradiated embryos (7,5 %, N=550) in comparison with the control (97,7 %, N=707) by factor of 13. Stage of development: beginning of shell forming. | MT | Kulikov, 1975 | | A104-1 | Mollu
sc's | Lymnaea
stagnalis L. | Gamma-
exposure of | Co-60 | | | | 0,15 Gy | No significant change for the abnormal irradiated embryos (1,0 %, | NE | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------------|--------------------|----------|---|----------------|---------------| | | eggs | Pond snail | impregnated mollusca eggs in stage of beginning of shell forming in experiment. | | | | | | N=477) in comparison with the control (0,3 %, N=692). Stage of development under exposure: beginning of shell forming. | | | | A104-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure
of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 1,5 Gy | No significant change for the abnormal irradiated embryos (1,7 %, N=534) in comparison with the control (0,3 %, N=692). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | A104-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 3,0 Gy | No significant change for the abnormal irradiated embryos (0,4 %, N=538) in comparison with the control (0,3 %, N=692). Exposure at the stage of development: beginning of shell forming. | NE | Kulikov, 1975 | | A104-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 6,0 Gy | No significant change for the abnormal irradiated embryos (0,8 %, N=480) in comparison with the control (0,3 %, N=692). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | A104-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of | Co-60 | | | | 12,0 Gy | No significant change for the abnormal irradiated embryos (1,3 %, N=555) in comparison with the control (0,3 %, N=692). Stage of development under exposure: beginning of shell forming. | NE | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|--| | | | | shell forming in experiment. | | | | | | | | | | A104-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Gamma-
exposure of
impregnated
mollusca eggs
in stage of
beginning of
shell forming
in experiment. | Co-60 | | | | 15,0 Gy | Increase of the abnormal irradiated embryos (4,9 %, N=263) in comparison with the control (0,3 %, N=692) by factor of 16. Stage of development under exposure: beginning of shell forming. | REPR | Kulikov, 1975 | | A105-1 | Fish eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,25 Gy | Increase of the survival of irradiated embryos (78,7 (76,8-80,6) %, N=322) in comparison with the control (71 (69-73) %, N=488) on 7,7 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | STIM | Alshitz, 1970;
Kulikov, 1971,
1975 | | A105-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,50 Gy | Increase of the survival of irradiated embryos (77,0 (74,7-79,3) %, N=452) in comparison with the control (71 (69-73) %, N=488) on 6 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | STIM | Alshitz, 1970;
Kulikov, 1971,
1975 | | A105-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | No significant change for the survival of irradiated embryos (68 (65,2-70,8) %, N=274) in comparison with the control (71 (69-73) %, N=488). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A105-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in | Co-60 | | | | 2,0 Gy | Decrease of the survival of irradiated embryos (47,5 (44,7-50,3) %, N=302) in comparison with the control (71 (69-73) %, N=488) on 23,5 %. Stage | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|--| | | | | early stages of
development
in experiment. | | | | | | of development under exposure:
before first cleavage of zygote.
Temperature of water was 10 degrees
centigrade. | | | | A105-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 4,0 Gy | Decrease of the survival of irradiated embryos (33,6 (30,4-36,8) %, N=218) in comparison with the control (71 (69-73) %, N=488) on 37,4 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | A105-6 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 8,0 Gy | Decrease of the survival of irradiated embryos (0 %, N=229) in comparison with the control (71 (69-73) %, N=488). Death of embryos on stage of early gastrula. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | A106-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,25 Gy | No significant change for the abnormal irradiated embryos (6,4 (4,9-7,9) %, N=251) in comparison with the control (9,3 (7,7-10,9) %, N=343). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A106-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,5 Gy | No significant change for the abnormal irradiated embryos (8,3 (6,4-10,2) %, N=347) in comparison with the control (9,3 (7,7-10,9) %, N=343). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|--| | A106-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | No significant change for the abnormal irradiated embryos (6,6 (4,8-8,4) %, N=182) in comparison with the control (9,3 (7,7-10,9) %, N=343). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A106-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 2,0 Gy | No significant change for the abnormal irradiated embryos (11,2 (8,5-14,4) %, N=145) in comparison with the control (9,3 (7,7-10,9) %, N=343). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A106-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 4,0 Gy | Increase of the abnormal irradiated embryos (41 (35,2-46,8) %, N=73) in comparison with the control (9,3 (7,7-10,9) %, N=343) by factor of 4,4. Stage of development
under exposure: before first cleavage of zygote. Temperature of water was 10 degrees centigrade. | REPR | Alshitz, 1970;
Kulikov, 1971,
1975 | | A107-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,25 Gy | Increase of the survival of irradiated embryos (83 (80,6-85,4) %, N=394) in comparison with the control (70,7 (67,6-73,8) %, N=207) on 12,3 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | STIM | Alshitz, 1970;
Kulikov, 1971,
1975 | | A107-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in | Co-60 | | | | 0,50 Gy | No significant change for the survival of irradiated embryos (74 (72,6-77,4) %, N=278) in comparison with the control (70,7 (67,6-73,8) %, N=207). | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|--| | | | | early stages of
development
in experiment. | | | | | | Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | | | | A107-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | No significant change for the survival of irradiated embryos (75 (65,2-70,8) %, N=326) in comparison with the control (70,7 (67,6-73,8) %, N=207). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A107-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 2,0 Gy | Decrease of the survival of irradiated embryos (49,5 (46,2-52,8) %, N=246) in comparison with the control (70,7 (67,6-73,8) %, N=207) on 21,2 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | A107-5 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 4,0 Gy | Decrease of the survival of irradiated embryos (0 %, N=305) in comparison with the control (70,7 (67,6-73,8) %, N=207). Death of embryos before hatching eggs. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | A107-6 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 8,0 Gy | Decrease of the survival of irradiated embryos (0 %, N=290) in comparison with the control (70,7 (67,6-73,8) %, N=207). Death of embryos on stage of late blastula. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | MT | Alshitz, 1970;
Kulikov, 1971,
1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|--| | A108-1 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,25 Gy | No significant change for the abnormal irradiated embryos (12,3 (10,5-14,1) %, N=325) in comparison with the control (10,3 (7,8-12,8) %, N=146). Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | NE | Alshitz, 1970;
Kulikov, 1971,
1975 | | A108-2 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,5 Gy | Increase of the abnormal irradiated embryos (16,0 (13,3-18,7) %, N=325) in comparison with the control (10,3 (7,8-12,8) %, N=146) on 5,7 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | REPR | Alshitz, 1970;
Kulikov, 1971,
1975 | | A108-3 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | Increase of the abnormal irradiated embryos (27,2 (24,4-30) %, N=249) in comparison with the control (10,3 (7,8-12,8) %, N=146) on 16,9 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | REPR | Alshitz, 1970;
Kulikov, 1971,
1975 | | A108-4 | Fish
eggs | Esox lucius
L. Pike | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 2,0 Gy | Increase of the abnormal irradiated embryos (57,0 (52,4-61,6) %, N=122) in comparison with the control (10,3 (7,8-12,8) %, N=146) on 46,7 %. Stage of development under exposure: before first cleavage of zygote. Temperature of water was 20 degrees centigrade. | REPR | Alshitz, 1970;
Kulikov, 1971,
1975 | | A109-1 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in | Co-60 | | | | 0,25 Gy | No significant change for the survival of irradiated embryos (84 (79,8-88,2) %, N=3151) in comparison with the control (82,5 (80,2-84,8) %, N=2341). | NE | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|---|----------------|---------------| | | | | early stages of development in experiment. | | | | | | Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | | | | A109-2 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,5 Gy | No significant change for the survival of irradiated embryos (83 (80,2-85,8) %, N=2234) in comparison with the control (82,5 (80,2-84,8) %, N=2341). Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A109-3 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | No significant change for the survival of irradiated embryos (83 (79,9-86,1) %, N=2016) in comparison with the control (82,5 (80,2-84,8) %, N=2341). Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A109-4 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 2,0 Gy | No significant change for the survival of irradiated embryos (80 (76-84) %, N=2544) in comparison with the control (82,5 (80,2-84,8) %, N=2341). Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A109-5 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 4,0 Gy | No survival of irradiated embryos (0 %, N=3010); in the control survived were 82,5 (80,2-84,8) %, N=2341. Death of embryos before hatching eggs. Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | МТ | Kulikov, 1975 | | A109-6
 Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of | Co-60 | | | | 8,0 Gy | No survival of irradiated embryos (0 %, N=2950); in the control survived were 82,5 (80,2-84,8) %, N=2341). Death of embryos on stage of late gastrula. Exposure at the stage of | MT | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|--------------------|----------|--|----------------|---------------| | | | | development in experiment. | | | | | | development: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | | | | A109-7 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 12,0 Gy | No survival of irradiated embryos (0 %, N=2116); in the control survived were 82,5 (80,2-84,8) %, N=2341. Death of embryos on the stage: beginning of gastrulation. Exposure at the stage of development: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | MT | Kulikov, 1975 | | A110-1 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,25 Gy | No significant change for the abnormal of irradiated embryos (5,4 (3,7-7,1) %, N=2657) in comparison with the control (7,2 (5,1-9,3) %, N=1992). Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A110-2 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 0,5 Gy | No significant change for the abnormal of irradiated embryos (9,2 (7-11,4) %, N=1847) in comparison with the control (7,2 (5,1-9,3) %, N=1992). Stage of development under exposure: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A110-3 | Fish
eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated
fish eggs in
early stages of
development
in experiment. | Co-60 | | | | 1,0 Gy | No significant change in the numbers of abnormalities in irradiated embryos (13,2 (8,8-17,2) %, N=1675) in comparison with the control (7,2 (5,1-9,3) %, N=1992). Exposure at the stage of development: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | NE | Kulikov, 1975 | | A110-4 | Fish eggs | Tinca tinca
L. Tench | Gamma-
exposure of
impregnated | Co-60 | | | | 2,0 Gy | Increase of the abnormalities in irradiated embryos on 25,5 % (32,7 (29,7-35,7) %, N=2022; control 7,2 | REPR | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|------------------------------|---|----------------|--| | | | | fish eggs in
early stages of
development
in experiment. | | | | | | (5,1-9,3) %, N=1992). Exposure at the stage of development: 2 blastomeres. Temperature of water was 20-23 degrees centigrade. | | | | A111-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | 4,30E-06 | 0,000035
Gy for 8
days | No significant change for the survival of irradiated embryos (98,0 %, N=539) in comparison with the control (98 %, N=553). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 3,7
kBq/L | | 4,30E-04 | 0,0035
Gy for 8
days | No significant change for the survival of irradiated embryos (97,2 %, N=497) in comparison with the control (98 %, N=553). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 37 kBq/L | | 4,30E-03 | 0,035 Gy
for 8 days | No significant change for the survival of irradiated embryos (98,5 %, N=266) in comparison with the control (98 %, N=553). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 370
kBq/L | | 4,30E-02 | 0,35 Gy
for 8 days | No significant change for the survival of irradiated embryos (96 %, N=653) in comparison with the control (98 %, N=553). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development | Sr-90,
Y-90 | 3700
kBq/L | | 0,43 | 3,5 Gy
for 8 days | No significant change for the survival of irradiated embryos (97 %, N=602) in comparison with the control (98 %, N=553). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|------------------------------|---|----------------|--| | | | | of mollusca
embryos in
experiment. | | | | | | | | | | A111-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 18500
kBq/L | | 2,1 | 17 Gy for
8 days | Decrease of the survival of irradiated embryos (91,5 %, N=366) in comparison with the control (98 %, N=553) on 6,5 %. | MT | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 37000
kBq/L | | 4,3 | 35 Gy for
8 days | Decrease of the survival of irradiated embryos (61,5 %, N=501) in comparison with the control (98 %, N=553) on 36,5 %. | МТ | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A111-8 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 370000
kBq/L | | | 350 Gy
for 8 days | None of of irradiated embryos survived (0 %, N=550); control (98 %, N=553). | MT | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-1 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | 4,30E-06 | 0,000035
Gy for 8
days | No significant change for the abnormal irradiated embryos (0 %, N=527) in comparison with the control (0,2 %, N=544). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-2 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca | Sr-90,
Y-90 | 3,7 kBq/L | | 4,30E-04 | 0,0035
Gy for 8
days | No significant change for the abnormal irradiated embryos (0,4 %, N=481) in comparison with the control (0,2 %, N=544). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|---------------------------------------|---|----------------|-------------------------------|----------------------------------|--------------------|------------------------
---|----------------|--| | | | | embryos in experiment. | | | | | | | | | | A112-3 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 37 kBq/L | | 4,30E-03 | 0,035 Gy
for 8 days | No significant change for the abnormal irradiated embryos (0,4 %, N=262) in comparison with the control (0,2 %, N=544). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-4 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 370
kBq/L | | 4,30E-02 | 0,35 Gy
for 8 days | No significant change for the abnormal irradiated embryos (0,8 %, N=625) in comparison with the control (0,2 %, N=544). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-5 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 3700
kBq/L | | 0,43 | 3,5 Gy
for 8 days | No significant change for the abnormal irradiated embryos (0,5 %, N=584) in comparison with the control (0,2 %, N=544). | NE | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-6 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in
experiment. | Sr-90,
Y-90 | 18500
kBq/L | | 2,1 | 17 Gy for
8 days | Increase of the abnormal irradiated embryos (1,2 %, N=335) in comparison with the control (0,2 %, N=544) by factor of 6. | REPR | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | A112-7 | Mollu
sc's
eggs | Lymnaea
stagnalis L.
Pond snail | Impact of Sr-
90 and Y-90
on
development
of mollusca
embryos in | Sr-90,
Y-90 | 37000
kBq/L | | 4,3 | 35 Gy for
8 days | Increase of the abnormal irradiated embryos (6,2 %, N=308) in comparison with the control (0,2 %, N=544) by factor of 31. | REPR | Kulikov, 1966,
1967, 1971, 1975;
Timofeeva, 1971 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|--|----------------|--| | A113-1 | Fish eggs | Tinca tinca
L. Tench | experiment. Impact of Sr- 90 and Y-90 on development of fish embryos in experiment. | Sr-90,
Y-90 | 3,7 Bq/L | | | 1,57E-07
Gy | No significant change for the survival of irradiated embryos (72,3 (67,2-77,4) %, N=2931) in comparison with the control (75 (70,9-79,1) %, N=2810). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A113-2 | Fish eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | | 1,57E-06
Gy | No significant change in the survival of irradiated embryos (70,2 (62,1-78,3) %, N=3045) in comparison with the control (75 (70,9-79,1) %, N=2810). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A113-3 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | | 1,57E-05
Gy | No significant change for the survival of irradiated embryos (74 (68,9-79,1) %, N=2772) in comparison with the control (75 (70,9-79,1) %, N=2810). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A113-4 | Fish eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | | 1,57E-04
Gy | No significant change for the survival of irradiated embryos (71 (63,8-78,2) %, N=2951) in comparison with the control (75 (70,9-79,1) %, N=2810). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A113-5 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | | 1,57E-02
Gy | No significant change for the survival of irradiated embryos (77 (74,6-79,4) %, N=1597) in comparison with the control (75 (70,9-79,1) %, N=2810). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|---|----------------|--| | A114-1 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3,7 Bq/L | | | 1,57E-07
Gy | No significant change for the abnormal irradiated embryos (7,0 %, N=2118) in comparison with the control (6,8 %, N=2106). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A114-2 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | | 1,57E-06
Gy | No significant change for the abnormal irradiated embryos (6 %, N=2136) in comparison with the control (6,8 %, N=2106). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A114-3 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | | 1,57E-05
Gy | No significant change for the abnormal irradiated embryos (7,5 %, N=2054) in comparison with the control (6,8 %, N=2106). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A114-4 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | | 1,57E-04
Gy | No significant change for the abnormal irradiated embryos (6,1 %, N=2092) in comparison with the control (6,8 %, N=2106). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A114-5 | Fish
eggs | Tinca tinca
L. Tench | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | | 1,57E-02
Gy | No significant change for the abnormal irradiated embryos (6,9 %, N=1231) in comparison with the control (6,8 %, N=2106). | NE | Kulikov, 1968,
1975; Timofeeva,
1971 | | A115-1 | Fish | Esox lucius | Impact of Sr- | Sr-90, | 37 Bq/L | | 3,00E-06 | 2,59E-05 | No significant change in the survival | NE | Kulikov, 1975; | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|--|----------------|-----------------------------------| | | eggs | L. Pike | 90 and Y-90 on development of fish embryos in experiment. | Y-90 | | | | Gy | of irradiated embryos (74 (72-76) %, N=400) in comparison with the control (72 (70-74) %, N=445). | | Timofeeva, 1970 | | A115-2 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | 3,00E-05 | 2,59E-04
Gy | No significant change for the survival of irradiated embryos (72 (69-75) %, N=316) in comparison with the control (72 (70-74) %, N=445). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A115-3 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | 3,00E-04 | 2,59E-03
Gy | No significant change for the survival of irradiated embryos (66 (62-69) %, N=369) in comparison with the control (72 (70-74) %, N=445). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A115-4 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | 3,00E-02 | 2,59E-01
Gy | Increase of the survival of irradiated embryos (80 (78-82) %, N=318) in comparison with the control (72 (70-74) %, N=445) on 8 %. | STIM | Kulikov, 1975;
Timofeeva, 1970 | | A115-5 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos
in
experiment. | Sr-90,
Y-90 | 3700
kBq/L | | 0,3 | 2,59 Gy | No significant change for the survival of irradiated embryos (75 (73-77) %, N=378) in comparison with the control (72 (70-74) %, N=445). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A116-1 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90 | Sr-90,
Y-90 | 37 Bq/L | | 3,00E-06 | 2,59E-05
Gy | No significant change for the abnormal irradiated embryos (13,5 | NE | Kulikov, 1975;
Timofeeva, 1970 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name, common name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|----------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|-----------------------|---|----------------|-----------------------------------| | | | | on
development
of fish
embryos in
experiment. | | | | | | (11,5-15,5) %, N=296) in comparison with the control (10,2 (8,3-12,1) %, N=322). | | | | A116-2 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | 3,00E-05 | 2,59E-04
Gy | No significant change in numbers of the abnormal irradiated embryos (10,5 (8,5-12,5) %, N=228; control 10,2 (8,3-12,1) %, N=322). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A116-3 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | 3,00E-04 | 2,59E-03
Gy | No significant change for the abnormal irradiated embryos (15 (12,7-17,3) %, N=245) in comparison with the control (10,2 (8,3-12,1) %, N=322). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A116-4 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | 3,00E-02 | 2,59E-01
Gy | No significant change for the abnormal irradiated embryos (12 (10-14) %, N=254) in comparison with the control (10,2 (8,3-12,1) %, N=322). | NE | Kulikov, 1975;
Timofeeva, 1970 | | A116-5 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
kBq/L | | 0,3 | 2,59 Gy | Increase of the abnormal irradiated embryos (21 (16,9-25,1) %, N=284) in comparison with the control (10,2 (8,3-12,1) %, N=322) by factor of 2,1. | REPR | Kulikov, 1975;
Timofeeva, 1970 | | A117 | Fish
eggs | Perca
fluviatilis L.
Perch | Impact of Sr-
90 and Y-90
on | Sr-90,
Y-90 | 3,7-
370000
Bq/L | | | 0,000002
9-0,29 Gy | No significant change in numbers of
the abnormal irradiated embryos in
comparison with the control. | NE | Kulikov, 1975 | | Identifi cation NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------|----------------------------|-------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|--|----------------|---------------| | | | | development
of fish
embryos in
experiment. | | | | | | | | | | A118-1 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | 3,00E-06 | 2,59E-05
Gy | No significant change in numbers of defective anaphases and telophases in cells of irradiated embryos (8,8 (7,5-10,1) %, N=500) in comparison with the control (11,4 (10,0-12,8) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A118-2 | Fish eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | 3,00E-05 | 2,59E-04
Gy | No significant change in numbers of defective anaphases and telophases in cells of irradiated embryos (11,0 (9,6-12,4) %, N=500) in comparison with the control (11,4 (10,0-12,8) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A118-3 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | 3,00E-04 | 2,59E-03
Gy | Increase of the defective anaphases and telophases in cells of irradiated embryos by factor of 1,4 (15,6 (14-17,2) %, N=500; control 11,4 (10,0-12,8) %, N=500) . Stage of development of embryos : late blastula. | CG | Kulikov, 1975 | | A118-4 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | 3,00E-02 | 2,59E-01
Gy | Increase of the defective anaphases and telophases in cells of irradiated embryos by factor of 1,5: (17,6 (15,9-19,3) %, N=500) in comparison with the control (11,4 (10,0-12,8) %, N=500). Stage of development of embryos: late blastula. | CG | Kulikov, 1975 | | A118-5 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development | Sr-90,
Y-90 | 3700000
Bq/L | | 0,3 | 2,59 Gy | Increase of the defective anaphases and telophases in cells of irradiated embryos (28,4 (26,3-30,5) %, N=500) in comparison with the control (11,4 | CG | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|--|----------------|---------------| | | | | of fish embryos in experiment. | | | | | | (10,0-12,8) %, N=500) by factor of 2,5. Stage of development of embryos: late blastula. | | | | A119-1 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | 3,00E-06 | 2,59E-05
Gy | No significant change in cells with bridges in irradiated embryos (1,0 (0,6-1,4) %, N=500; in control 1,2 (0,7-1,7) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A119-2 | Fish eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | 3,00E-05 | 2,59E-04
Gy | Increase of the cells with bridges for irradiated embryos (2,8 (2,1-3,5) %, N=500) in comparison with the control (1,2 (0,7-1,7) %, N=500) by factor of 2,3. Stage of development of embryos: late blastula. | CG | Kulikov, 1975 | | A119-3 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | 3,00E-04 | 2,59E-03
Gy | No significant change in cells with bridges in irradiated embryos (1,4 (0,9-1,9) %, N=500) in comparison with the control (1,2 (0,7-1,7) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A119-4 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | 3,00E-02 | 2,59E-01
Gy | Increase of the cells with bridges in irradiated embryos by factor of 2,5 (3,0 (2,2-3,8) %, N=500; control: 1,2 (0,7-1,7) %, N=500). Stage of development of embryos: late blastula. | CG | Kulikov, 1975 | | A119-5 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish | Sr-90,
Y-90 | 3700000
Bq/L | | 0,3 | 2,59 Gy | Increase of the cells with bridges for irradiated embryos (6,0 (4,9-7,1) %, N=500) in comparison with the control (1,2 (0,7-1,7) %, N=500) by factor of 5. Stage of development of embryos | CG | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|-------------------------------|---|----------------|-------------------------------|----------------------------|--------------------|----------------|---|----------------
---------------| | | | | embryos in experiment. | | | | | | : late blastula. | | | | A120-1 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 37 Bq/L | | 3,00E-06 | 2,59E-05
Gy | No significant change in cells with fragments for irradiated embryos (8,4 (7,1-9,7) %, N=500) in comparison with the control (9,6 (8,3-10,9) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A120-2 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370 Bq/L | | 3,00E-05 | 2,59E-04
Gy | No significant change in cells with fragments in irradiated embryos (9,4 (8,1-10,7) %, N=500; control: 9,6 (8,3-10,9) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A120-3 | Fish eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 3700
Bq/L | | 3,00E-04 | 2,59E-03
Gy | No significant change in cells with fragments in irradiated embryos (9,2 (7,9-10,5) %, N=500; control 9,6 (8,3-10,9) %, N=500). Stage of development of embryos: late blastula. | NE | Kulikov, 1975 | | A120-4 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in
experiment. | Sr-90,
Y-90 | 370000
Bq/L | | 3,00E-02 | 2,59E-01
Gy | Increase of the numbers of cells with fragments in irradiated embryos by factor of 1,7 (16,6 (14,9-18,3) %, N=500; control: 9,6 (8,3-10,9) %, N=500). Stage of development of embryos: late blastula. | CG | Kulikov, 1975 | | A120-5 | Fish
eggs | Esox lucius
L. Pike | Impact of Sr-
90 and Y-90
on
development
of fish
embryos in | Sr-90,
Y-90 | 3700000
Bq/L | | 0,3 | 2,59 Gy | Increase of the numbers of cells with fragments in irradiated embryos by factor of 2,4 (23 (21,1-24,9) %, N=500; control 9,6 (8,3-10,9) %, N=500). Stage of development of embryos: late blastula. | CG | Kulikov, 1975 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity in tissues, Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|--|--|-------------------------------|----------------------------|--------------------|----------|---|----------------|----------------| | A121-1 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | experiment. Laboratory experiment Impact of uranium solutions on survival of Daphnia. Starting number of Daphnia in each vessel - 15. | Uraniu
m,
natural,
also U-
238 | 100 mg/L | | | | Death of all Daphnia within 1-2 days | MT | Guskova , 1972 | | A121-2 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Laboratory experiment Impact of uranium solutions on survival of Daphnia. Starting number of Daphnia in each vessel - 15. | Uraniu
m,
natural,
also U-
238 | 10 mg/L | | | | Death of all Daphnia within 7 days | MT | Guskova, 1972 | | A121-3 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Laboratory experiment Impact of uranium solutions on survival of Daphnia. Starting number of Daphnia in each vessel - | Uraniu
m,
natural,
also U-
238 | 5 mg/L | | | | Death of about 40% of Daphnia, depression of reproduction | MT | Guskova, 1972 | | Identifi
cation
NN. | Type
of
organ
ism | Latin name,
common
name | Impact | Nuclide | Activity
in water,
Bq/L | Activity
in tissues,
Bq/kg | Dose rate,
Gy/d | Dose, Gy | Effect | Effect
Code | Reference | |---------------------------|----------------------------|---------------------------------------|---|--|-------------------------------|----------------------------------|--------------------|----------|---|----------------|----------------| | A121-4 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Laboratory experiment Impact of uranium solutions on survival of Daphnia. Starting number of Daphnia in each vessel - 15. | Uraniu
m,
natural,
also U-
238 | 1 mg/L | | | | Slight decrease in Daphnia population in 130 days,12-13 generations in the experiment; 15 - in the control. | MT | Guskova , 1972 | | A121-5 | Zoopl
ankto
n | Daphnia
magna
Straus
Daphnia | Laboratory experiment Impact of uranium solutions on survival of Daphnia. Starting number of Daphnia in each vessel - 15. | Uraniu
m,
natural,
also U-
238 | <0.5
mg/L | | | | No effect on Daphnia survival and reproduction in 45 days | MT | Guskova, 1972 |