ANNEX E. EPIC DATABASE "RADIATION EFFECTS ON MICROORGANISMS" (RUSSIAN/FSU DATA) EFFECTS OF RADIATION ON MICROORGANISMS (RUSSIAN/FSU DATA), CHRONIC AND ACUTE EXPOSURE. Effect codes: NE-no effect; CG- cytogenetic effect; REPR-effect on reproduction; MT-effect on mortality; MB-effect on morbidity; AD-adaptation to radiation; STIM-stimulation; IMIT-imitation of radiation effect by chemical agent. | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water, Bq/L or soil, Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|--|---|-------------------------------|---|--------------------|-------------|---|----------------|------------------------------| | M1-1 | Microorga
nisms | Bacteria: Bacillus cereus, Methylobacteri um extorguens, M.mesophilicu m | Territory
contaminated from
the Chernobyl
accident (10-km
zone around
ChNPP).Field
studies 1993-1995. | Cs-137 | | | | Bacteria Bacillus cereus, Methylobacterium extorguens, M.mesophilicum were found in all samples of contaminated soil. No difference with the control. Bacteria: | NE | Romanovskaya
et al., 1986 | | M1-2 | Microorga
nisms | Specialised
bacteria:
nitrifying,
sulphate-
reducing,
nitrogen-
fixing,
cellulose-
destroying,
heterotrophic
iron bacteria | Territory
contaminated from
the Chernobyl
accident (10-km
zone around
ChNPP). Field
studies 1993-1995. | Cs-137 | 1,11E+04
Bq/kg soil | | | Concentrations of specialized bacteria (nitrifying, sulphate-reducing, nitrogen-fixing, cellulose-destroying, heterotrophic iron bacteria) were 10-100 times lower than in the control. | MT | Romanovskaya
et al., 1986 | | M1-2 | Microorga
nisms | Bacteria from
different
specialised
groups | Experiment, imitation of radiation by keeping bacteria in solutions of hydrogen peroxide (0,1 - 1 Mole). Time of exposure 5-45 minutes. | H ₂ O ₂ | 0,1 - 1
Mole of
hydrogen
peroxide
in solution | | | Species of bacteria, which are resistant to H ₂ O ₂ well survive in the Chernobyl near zone, bacteria sensitive to H2O2 were depressed in contaminated soils. | IMIT | Romanovskaya
et al., 1986 | | M2-1 | Microorga
nisms | Saprophytic flora | Experiment, single addition of radionuclide in aquatic system | Ru-106 | 3,7E+02 -
3,7E+05 | | | No effect on saprophytic flora and biological oxygen depletion. | NE | Guskova et al.,
1973 | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water, Bq/L or soil, Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|-------------------------|---|---------|--|--------------------|-------------|---|----------------|---| | M2-2 | Microorga
nisms | Saprophytic flora | Experiment, single addition of radionuclide in aquatic system | Ru-106 | 3,7E+06 -
3,7E+07 | | | Depression of saprophytic microflora (48,8% of control). | MT | Guskova et al.,
1973 | | M2-3 | Microorga
nisms | Infusoria | Experiment, single addition of radionuclide in aquatic system | Ru-106 | 1,85E+07 | | | Decrease in survival of infuzoria by 15-20% | MT | Guskova et al.,
1973 | | M3 | Microorga
nisms | Protoccocue
algae | Experiment, single addition of radionuclide in aquatic system | I-131 | 3,70E+05 | | | Growth rate of protoccocous algae slightly decreased | REPR | Guskova et al.,
1973 | | M4 | Microorga
nisms | Flagellata | Experimental plot
contaminated with
Sr-90.Upper
horizon of
chernozem-
meadow soil under
a cereal motley
grass. | Sr-90 | 74E+06
Bq/m2 | | | Species diversity in Flagellata group did not differ from the control (n=8 species in the experimental plot; n=9 species – in the control plot). | NE | Korganova,1973;
Krivolutskiy,198
3, p.46. | | M5 | Microorga
nisms | Flagellata | Experimental plot
contaminated with
Sr-90.Upper
horizon of
chernozem-
meadow soil under
a cereal motley
grass. | Sr-90 | 7.4E+07
Bq/m2 | | | Numbers of flagellata cells per 1 g of air-dry soil were lower than those in the control (17 000 in the experimental plot; 166 000 – in the control). | MT | Korganova,1973;
Krivolutskiy,198
3, p.46. | | M6 | Microorga
nisms | Amoebida | Experimental plot
contaminated with
Sr-90.Upper
horizon of
chernozem-
meadow soil under
a cereal motley | Sr-90 | 7.4E+07
Bq/m2 | | | Species diversity in Ameboida group decreased in the contaminated area (n=8 species in the experimental plot; n=15 – in the control plot). | ECOL | Korganova,1973;
Krivolutskiy,198
3, p.46. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in
water,
Bq/L or
soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|--|------------------|--|--------------------|-------------|--|----------------|---| | M7 | Microorga
nisms | Amoebida | grass. Experimental plot contaminated with Sr-90.Upper horizon of chernozemmeadow soil under a cereal motley grass. | Sr-90 | 74E+06
Bq/m2 | | | Numbers of ameboid cells per 1 g of air-dry soil were lower (7 000) on the experimental plot than those in the control (183 000). | MT | Korganova,1973;
Krivolutskiy,198
3, p.46. | | M8 | Microorga
nisms | Infusoria | Experimental plot contaminated with Sr-90.Upper horizon of chernozemmeadow soil under a cereal motley grass. | Sr-90 | 7.4E+07
Bq/m2 | | | Species diversity in Infuzoria group did not differ from the control. | NE | Korganova,1973;
Krivolutskiy,198
3, p.46. | | M9 | Microorga
nisms | Infusoria | Experimental plot contaminated with Sr-90.Upper horizon of chernozemmeadow soil under a cereal motley grass. | Sr-90 | 7.4E+07
Bq/m2 | | | Numbers of Infusoria cells per 1 g of air-dry soil were lower (n=25) on the experimental plot comparing with the control (n=45). | MT | Korganova,1973;
Krivolutskiy,198
3, p.46. | | M10-1 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella | Sr-90 - Y-
90 | 3.7E+08 | 2,85 | | Increase of mutations in Chlorella cells. Maximum amount of mutant cells in population was 1%. Irradiation did not influenced on viability of cells. Natural level of mutation in Chlorella - (0,3-0,6)% | NE | Shevchenko,
1979. | | M10-2 | Microorga
nisms | Chlorella
vulgaris, uni- | Culture of
Chlorella | Sr-90 - Y-
90 | 7.4E+08 | 5,7 | | Increase of mutations in
Chlorella cells. Maximum | NE | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|--|------------------|--|--------------------|-------------|---|----------------|----------------------| | | | cell
microalgae | | | | | | amount of mutant cells in population was 2%. Irradiation did not influenced the viability of cells. Natural level of mutation in Chlorella - (0,3-0,6)% | | | | M10-3 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella | Sr-90 - Y-
90 | 1,85E+09 | 14,25 | | Increase of mutations in Chlorella cells. Maximum amount of mutant cells in population was 5%. Irradiation did not influenced the viability of cells. Natural level of mutation in Chlorella - (0,3-0,6)% | NE | Shevchenko,
1979. | | M11-1 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Radionuclide was added at the beginning of experiment (1st series of experiment). | Pm-147 | 1,85E+08 | 0,155 | | Numbers of viable cells decreased; minimal amount of viable cells in population was about 80%, at stabilization - about 98%. Numbers of mutant cells increased: at maximum, share of mutant cells was 8%, at stabilization about 4-5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M11-2 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Radionuclide was added at the beginning of experiment (1st series of experiment). | Pm-147 | 7,40E+08 | 0,62 | | Numbers of viable cells decreased; minimal amount of viable cells in population was about 35%, at stabilization - about 90%. Numbers of mutant cells increased: at maximum, the numbers of mutant cells were 18%, at stabilization about 11%. Natural level of mutation in | CG | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name,
common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|--|---------|--|--------------------|-------------|--|----------------|----------------------| | M11-3 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Radionuclide was added at the beginning of experiment (1st series of experiment). | Pm-147 | 1,85E+09 | 1,55 | | Chlorella - (0,3-0,6)%. Numbers of viable cells decreased; minimal amount of viable cells in population was about 8-10%, at stabilization - about 80%. Numbers of mutant cells increased: at maximum, the share of mutant cells was 32%, at stabilization about 24%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M11-4 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Radionuclide was added after latency time (2nd series of experiments). | Pm-147 | 1,90E+08 | 0,155 | | At stabilization phase, share of mutant cells in population was 2%. Numbers of viable cells were about 90%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M11-5 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella.
Radionuclide was
added after latency
time (2nd set). | Pm-147 | 7,40E+08 | 0,62 | | At stabilization phase, share of mutant cells in population was 12%. Numbers of viable cells varied with time; at stabilization, viable cells amounted to about 70%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M11-6 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella.
Radionuclide was
added after latency
time (2nd set). | Pm-147 | 1,85E+09 | 1,55 | | Numbers of mutant cells varied with time from 10 to 40%, at stabilization - 15%. Numbers of viable cells decreased; at minimum, share of viable cells in population was about 8-10%, at stabilization - about 60%. Natural level of mutation in | CG | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|--------------------------|--|--|--|-------------|--|----------------|----------------------| | M12-1 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella. | Fission products of U-235 (age of FP at the start of experimen t was 10 hours). | 1,85E+10
Bq/l | | | Chlorella - (0,3-0,6)%. During the first 10 cycles of density reduplication, considerable increase of mutant cells was observed. Maximal share of mutant cells was 2,8%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-2 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. | Fission products of U-235 (age of FP at the start of experimen t was 10 hours). | 3,7E+9
Bq/l | | | Increase in the number of mutant cells in Chlorella population. Maximum share of mutant cells was 1%. After 20 cycles of density reduplication, share of mutant cells stabilized at a level 0,5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-3 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. | Fission
products
of U-235 (
age of FP
was 14
hours at
the start of
experimen
t). | 4,2E+9
Bq/l | Dose rate decreased exponentiall y from approximate ly 15 to 2.5 Gy/day in the first 8-10 days | | Maximum number of mutant cells was 3,5%. Increasing period of maximal mutation numbers indicated the delay in cell replication during the initial phase of experiment. In the course of the experiment, there were 21,6 cycles of density reduplication of cells in irradiated cultures compared with 23 cycles in the control. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko, 1979. | | M12-4 | Microorga
nisms | Chlorella
vulgaris, uni-
cell | Culture of Chlorella. | Fission products of U-235 (| 4,2E+9
Bq/l | Dose per
one cycle of
reduplicatio | | Numbers of viable cells decreased to 80,0±2,3% in first phase of the experiment, but | CG | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|--|---|--|---|-------------|--|----------------|----------------------| | | | microalgae | | age of FP
was 14
hours at
the start of
experimen
t). | | n decreased
exponentiall
y from 30
to 5 Gy in
the first 8-10
days | | by 8-10th cycles of density reduplication it was the same as in the control. | | | | M12-5 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | Fission
products (
age of FP
was 14
hours). | 8,5E+8
Bq/l | Dose per one cycle of reduplicatio n decreased exponentiall y from 2.5 to <1 Gy in the first 8-10 days | | Maximum number of mutant cells was 2%. After 5 cycles of density reduplication numbers of mutant cells decreased to a stabilization level (0,7%). Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-6 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella.
Cultivation in
volumetric flacks.
22-24 cycles of
duplication during
44 days of the
experiment. | Fission
products (
age of FP
was 2
days). | 3,7E+9
Bq/l | Dose per
one cycle of
reduplicatio
n decreased
exponentiall
y from 18
to 4 Gy
during the
first 8-10
days | | Maximal numbers of mutants (6%) were observed at 8-10th cycles of duplication; at stabilization phase, the percentage of mutants was about 2.5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-7 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | Fission
products (
age of FP
was 2
days). | 1,85E+9
Bq/l | Dose per
one cycle of
reduplicatio
n decreased
exponentiall
y from 9 to
2 Gy during
the first 8-10
days | | Maximal numbers of mutants (3%) were observed at 8-10th cycles of duplication; at stabilization, the share of mutants was about 1-1.5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-8 | Microorga | Chlorella | Culture of | Fission | 3,7E+9 | Dose per | | The highest numbers of | CG | Shevchenko, | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in
water,
Bq/L or
soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|---|--|--|--|-------------|--|----------------|----------------------| | | nisms | vulgaris, uni-
cell
microalgae | Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | products (
age of FP
was 20
days). | Bq/l | one cycle of reduplication decreased from 16 Gy to 4 Gy during the first 10 cycles, later on remained at a level about 4 Gy per cycle | | mutants (4.5-5%) were observed at 8-15th cycles of duptlication, at stabilization the percentage of mutants was about 3%. Natural level of mutation in Chlorella - (0,3-0,6)%. | | 1979. | | M12-9 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | Fission
products (
age of FP
was 20
days). | 1,85E+9
Bq/l | Dose per one cycle of reduplicatio n decreased from 8 Gy to 2 Gy during the first 10 cycles, later on remained at a level about 2 Gy per cycle | | The highest numbers of mutants (2-2.2%) were observed at 10-20th cycles of duplication; at stabilization, the percentage of mutants was about 1.5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M12-
10 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | Fission
products (
age of FP
was 20
days). | 9,25E+8
Bq/l | Dose per one cycle of reduplication decreased from 4 Gy to 1 Gy during the first 10 cycles, later on remained at a level | | The highest numbers of mutants (2-2.2%) were observed at 10-20th cycles of duptlication, at stabilization the percentage of mutants was about 1.5%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|---|--|--|--|---|--|----------------|----------------------| | | | | | | | about 1 Gy
per cycle | | | | | | M12-
11 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of Chlorella. Cultivation in volumetric flacks. 22-24 cycles of duplication during 44 days of the experiment. | Fission
products (
age of FP
was 20
days). | 4,44E+8
Bq/l | Dose per
one cycle of
reduplicatio
n decreased
from 2 Gy to
0.5 Gy
during the
first 10
cycles, later
on remained
at a level
about 0.5 Gy
per cycle | | The highest numbers of mutants (1-1.2%) were observed at 5-20th cycles of duptlication, at stabilization the percentage of mutants was about 0.7%. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko, 1979. | | M13-1 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella.
Cultivation in
volumetric
flacks. Time of
exposure was 17
days. | Y-90 | 3,7E+9
Bq/l | Dose per
one cycle of
reduplicatio
n decreased
from 25 Gy
to 1.4 Gy
during the
experiment | total
absor
bed
dose
was
160
Gy | Maximum numbers of mutant cells (3,7±0,3)% were observed at the first cycle of density reduplication, and later decreased. Since 19th cycle level of mutant cells was the same as on the control. Natural level of mutation in Chlorella - (0,3-0,6)%. | CG | Shevchenko,
1979. | | M13-2 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Culture of
Chlorella.
Cultivation in
volumetric flacks.
Time of exposure
was 17 days. | Y-90 | 2,22E+10
Bq/l | Dose per
one cycle of
reduplicatio
n decreased
from 290 Gy
to 5 Gy
during the
experiment | Total
dose -
980
Gy | Maximum number of mutant cells was $(7,0\pm0,3)\%$ on the 4,1th cycle of density reduplication. At stabilization, numbers of mutant cells were $(2,2\pm0,2)\%$. Natural level of mutation in Chlorella - $(0,3-0,6)\%$. | CG | Shevchenko,
1979. | | M13-3 | Microorga
nisms | Chlorella
vulgaris, uni-
cell | Culture of
Chlorella. Time of
exposure was 17 | Y-90 | 2,22E+10
Bq/l | Dose per
one cycle of
reduplicatio | Total
dose
980 | Number of viable cells
decreased. Lowest numbers of
viable cells (79,0±2,3)% were | MB | Shevchenko,
1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water,
Bq/L or soil,
Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|---|---|------------------|--|---|--|--|----------------|----------------------| | | | microalgae | days. | | | n decreased
from 290 Gy
to 5 Gy
during the
experiment | Gy | observed between the 1st and 2nd cycles of reduplication. | | | | M14-1 | Microorga
nisms | Chlorella
vulgaris, uni-
cell
microalgae | Cultures of Chlorella from the Kyshtym contaminated area, 5 years after the accident. Forms of Chlorella vulgaris from natural populations were subjected to additional exposure by x-rays (30E+3 R). 23 strains of Chlorella were tested | Sr-90 - Y-
90 | (1,7E+6 -
8,3E+6)
Bq/kg soil
soil | 0,011 -0,06
Gy/d
(chronic) | Addit
ional
acute
expos
ure
300
Gy | Increase of radioresistance was observed in natural Chlorella populations from the Kyshtym contaminated soils. Average survival of Chlorella cells after probing exposure was (33,5±1,5)%. Average survival of Chlorella cells in the control was (19,6±1,5)%. | MB | Shevchenko,
1979. | | M14-2 | Microorga
nisms | Chlorella vulgaris, uni- cell microalgae | Cultures of Chlorella from the Kyshtym contaminated area, 6 years after the accident.Forms of Chlorella vulgaris from natural population were subjected to additional exposure by x-rays (30E+3 R). Tested were 17 strains of Chlorella. | Sr-90 - Y-
90 | (1,7E+5 -
8,3E+5)
Bq/kg soil | 0,0013-
0,0063
Gy/day
chronic
exposure | Addit
ional
acute
expos
ure
300
Gy | Increase of radioresistance was observed in natural Chlorella populations from the Kyshtym contaminated soils. Average survival of Chlorella cells was (36,0±1,7)%. Average survival of Chlorella cells in the control was (19,6±1,5)%. | MB | Shevchenko,
1979. | | M14-3 | Microorga | Chlorella | Cultures of | Sr-90 - Y- | (1,7E+6 - | 0,013-0,063 | Addit | Increase of radioresistance | AD | Shevchenko, | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water, Bq/L or soil, Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|--|---|------------------|--|--|--|--|----------------|------------------------------| | | nisms | vulgaris,
unicell
microalgae | Chlorella from the Kyshtym contaminated area, 11 years after the accident.Forms of Chlorella vulgaris from natural population were subjected to additional exposure by gamma-rays from Cs-137 (30E+3 R).Tested were 17 strains of Chlorella. | 90 | 8,3E+6)
Bq/kg soil | Gy/day
chronic
exposure | ional
acute
expos
ure
300
Gy | was observed in natural Chlorella populations from the Kyshtym contaminated soils. Maximum average survival of Chlorella cells after probing exposure was (23,0±3,0)%. Average survival of Chlorella cells in the control was (12,2±2,2)%. | | 1979;
Alexeenok,
1970. | | M15-1 | Microorga
nisms | Chlorella vulgaris, uni- cell microalgae | Culture of Chlorella from the Kyshtym contaminated area, 5 years after the accident.Forms of Chlorella vulgaris from natural population were subjected to additional exposure from beta-emission of Y-90- Sr-90 (activity 5,6E+8Bq/l, dose rate 420 rad/day, time of exposure 1 day). | Sr-90 - Y-
90 | (1,7E+5 -
1,7E+6)
Bq/kg soil | 0,0013-
0,0126
Gy/day
chronic
exposure | Addit ional expos ure in radioa ctive soluti on 4.2 Gy | Radioresistance in chronically exposed Chlorella populations increased in the range of the levels of soil contamination (1,7E+4 - 1,7E+7) Bq/kg, and gradually decreased at higher contamination. Average radioresistance for cultures with normal phenotype was (80,8±4,1)% (in the control (34,6±7,9)%). | AD | Shevchenko,
1979. | | M15-2 | Microorga
nisms | Chlorella
elipsoidea, | Cultures of Chlorella from the | Sr-90 - Y-
90 | (1,7E+7 -
1,7E+8) | 0,13-1,26
Gy/day | Addit ional | Increase of radioresistance in chronically exposed Chlorella | AD | Shevchenko, 1979. | | Record
identifi
cation
number | Type of organism | Latin name, common name | Impact | Nuclide | Activity in water, Bq/L or soil, Bq/kg | Dose rate,
Gy/d | Dose,
Gy | Effect | Effect
Code | Reference | |--|--------------------|--|--|------------------|--|--|--|--|----------------|----------------------| | | | uni-cell
microalgae | Kyshtym contaminated area, 5 years after the accident.Forms of Chlorella elipsoidea from natural populations were subjected to additional exposure by beta-emission of Y-90- Sr-90 (activity of solution was 3,7E+8 Bq/l; dose rate 280 rad/day, time of exposure -1 day). | | Bq/kg soil | chronic
exposure | expos
ure in
radioa
ctive
soluti
on 2.8
Gy | population. Average survival of Chlorella elipsoidea cells was (47,4±16,5)%. Average survival of Chlorella cells on the control was (0,6±0,3)%. | | | | M15-3 | Microorga
nisms | Chlorella
terricola, uni-
cell
microalgae | Culture of Chlorella. Kyshtym contaminated area, 5 years after the accident.Forms of Chlorella terricola from natural population were subjected to additional exposure by beta-emission of Y-90- Sr-90 (activity of solution was 1,5E+8 Bq/l; dose rate 112 rad/day, time of exposure -1 day). | Sr-90 - Y-
90 | (1,7E+5 -
1,7E+6)
Bq/kg soil | 0,0013-
0,0126
Gy/day
chronic
exposure | Addit ional expos ure in radioa ctive soluti on 1.12 Gy | Increase of radioresistance in chronically exposed Chlorella population. Average survival of Chlorella terricola cells subjected to probing exposure was (35,7±9,9)%. Average survival of Chlorella cells in the control was (7,9±2,8)%. | AD | Shevchenko,
1979. |