From molecules to men: Effects of low-dose radiation at Chernobyl and Fukushima

CMIS

Anders Pape Møller

anders.moller@u-psud.fr

Mutations and DNA sequences

Microsatellite mutations in barn swallows

Figure 1 Examples of microsatellite germline mutations for barn swallow loci in the Chernobyl population. **a**, *HrU6*; **b**, *HrU9*. Lane 1, the father; lane 2, the mother; other lanes show offspring. Mutant alleles are arrowed. Note that the offspring to the left in **b** is mutant for both its father's and mother's allele.

(Ellegren et al., Nature 389:593-596, 1997)

Mutation rate in wheat

O. Kovalchuk, Y. E. Dubrova, A. Arkhipov, B. Hohn and I. Kovalchuk, Nature 407:583-584, 2000

Meta-analysis of radiation and mutation

Meta-analysis results

Mean effect size	P value	N	95% CI	Bootstrap CI	Bias Cl
0.81	< 0.0001	117	0.66 - 0.96	0.66 - 0.96	0.67 - 0.97

Sqrt Pooled Variance = 0.80

Mean Study Variance = 0.05 Ratio = 15.32

FAIL-SAFE NUMBER

Rosenthal's method: 4920

Interspecific differences in mutation rates

Abnormal sperm

Abnormal sperm in birds

F = 45.83, df = 1,9, r² = 0.83, P < 0.0001

Background radiation (µSv/h)

Brain size and radiation from Chernobyl

(Møller et al., PLoS One 6(2):e16862, 2011)

Selection against small heads

F = 9.92, df = 1,284, P = 0.0018

(Møller et al., PLoS One 6(2):e16862, 2011)

Left-skewed brain sizes

Abnormalities

Radiation (µSv/h)

Lenses and cataracts

Radiation (µSv/h)

ıd Physiology, Part A 162 (2012) 259–264

Survival and reproductive rates

Juvenile swallows in Fukushima

Interspecific interactions

Mammals and radiation

Radiation and tree rings

Standardized tree growth rate

Fungal attacks on Chernobyl logs

Ecosystem effects

Decomposition (1)

Decomposition (2)

Decomposition and radiation (3)

50% difference!!!

First epidemiological study of contamination through diet

(Dancause et al., AJHB 22:667-674, 2010)

Food Type	Mean ¹³⁷ Cs Level in Polissia (Bq/kg)	Daily Intake (kg)	Mean Daily ¹³⁷ Cs intake in Polissia (Bq)	MOH 1997 Accepted ¹³⁷ Levels (Bq)
Milk and Milk products	113.88	1.02	116.38	100.00
Meat ^a	84.45	0.19	15.71	200.00
Potatoes	31.76	0.36	11.40	60.00
Vegetables	15.71	0.28	4.38	40.00
Fruits ^b	5.73	0.13	2.21	70.00
Mushrooms ^c	13875.00	0.01	87.37	2.30
Berries ^c	2200.00	0.01	30.80	500.00
Estimated Dietary Intake			268.25	
Accepted MOH 1997 Levels			210.0	

TABLE 6. Estimated ¹³⁷Cs exposure through diet

^aMean ¹³⁷Cs level is based on estimates for pork, which was the main meat consumed. Beef is estimated to have a much higher ¹³⁷Cs level (301.6 Bq/kg). ^bMean ¹³⁷Cs level is based on estimates for apples, which was the main fruit consumed.

^bMean ¹³⁷Cs level is based on estimates for apples, which was the main fruit consumed. ^cMean ¹³⁷Cs levels based on estimates from Karachov, 2006, corrected for half-life reduction since 1999.

Conclusions

- Associations between background radiation and biological effects at all organisational levels
- Evidence for direct and indirect effects
- Scope for basic ecological and evolutionary research
- We can learn about the consequences of the next radiation accident now