RADIOACTIVE CONTAMINATION OF NEST MATERIAL DUE TO THE FUKUSHIMA NUCLEAR ACCIDENT IN PASSERINE BIRDS

<u>**Matsui S¹**</u>, Kasahara S¹, Morimoto G¹, Mikami OK², Watanabe M³, Ueda K¹

1 Rikkyo Uni, 2 Iwate- Medical Uni , 3 Tsukuba Uni

OUTLINE

- Fukushima Nuclear Accident
- Contamination of nest material in the
 - Tree Sparrows in 2011 & 2012
- Comparison of contamination of nest material between Tree Sparrows and Great Tits in 2012

March 11, 2011

×M9.0

日本經濟新聞

1	震度 7
•	震度6強
	震度6弱
6	震度5強
-	震度5弱
٩	震度 4
3	震度 3
2	截度 2
1	震度1
×	震央

Tokyo

日本經濟新聞

日本經濟新聞

THUNG

Fukushima Daiichi Nuclear Accident

Explosion of Reactor #3 on 14 March

Reactors on 15 March

FUKUSHIMA NUCLEAR ACCIDENT IN MARCH 2011

Tohoku Region Pacific Coast Earthquake & a substantial tsunami on 11 Mar 2011.

Mar 12 - 15

Mar 11 - 14

Mar 15

After Mar 15

Brumfiel (2011) Nature 478: 435-436.

News Release Ministry of Economy Trade and Industry

26 Aug, 2011

Amount of isotopes releasing into the atmosphere

Hiroshima bomb

Fukushima

31

Accident

Type of isotopes 16

from 2011-2012

Tree Sparrows

Great Tits

OUTLINE

- Fukushima Nuclear Accident
- Contamination of nest material in the
 - Tree Sparrows in 2011 & 2012
- Comparison of contamination of nest material between Tree Sparrows and Great Tits in 2012

EXPOSURE TO RADIATION IN NEST

Tree Sparrows

External dose of eggs & nestlings in contaminated nests.

PURPOSE

Comparison of radiation

levels in nest-boxes in

Tree Sparrows between 2011 & 2012.

HYPOTHESIS

Radioactive particles released from the Fukushima nuclear accident fell on grasslands, in which Tree Sparrows collected their nesting materials.

STUDY SITES

PREDICTIONS

(1) Level of contamination in nest-boxes would be greater in Ibaraki compared with Tokyo. (2) Level of contamination in nest-boxes would be greater in 2011 compared with 2012. (3) Level of contamination in nest-boxes would be positively related to nest weight.

METHODS

- Total 44 nest-boxes at Ibaraki & Tokyo in 2011 & 2012
- Measurement of dose rate (µGy/h, Geiger Counter)
 19 times at 10 sec intervals over a 3 min period
 at 1cm above inner surface of nest cup.
- Collect & weigh the nest materials (g)

Checking precision

Measurement of Cs concentration (Bq/kg, Ge detector) " μ Gy/h" & "Bq" in nest (Spearman r = 0.73, P < 0.001, n=19)

STATISTICS

Initial model

Dose rate inside ~ Nest Weight(N)+Site(S) nest-boxes (µGy/h) +Year(Y)+N:S+N:Y+S:Y

Site(Ibaraki, Tokyo) Year(2011, 2012) Contamination Levels in Nest-boxes

Best model

Dose rate inside nest-boxes (µGy/h)

~ Site(S)*+ Year(Y) + S:Y*

Estimate Site 0.07 * Year 0.008 S:Y 0.06 *

GLM, family = Gaussian Deviance = -0.118, P < 0.001

* coefficient is significant

Contamination Levels in Nest-boxes

PREDICTIONS

(1) Level of contamination in nest-boxes would be greater in Ibaraki compared with Tokyo. (2) Level of contamination in nest-boxes would be greater in 2011 compared with 2012. (3) Level of contamination in nest-boxes would be positively related to nest weight.

Contamination Levels in Nest-boxes

- Cs concentration (Bq/kg) by Ge detector Ibaraki (n = 10) & Tokyo (n = 9) in 2012.
- The amount of Cs in nest-boxes (Bq)
 - = Cs concentration (Bq/kg) * Nest weight (g)/1000
- Model selection
 The amount of Cs in nest-boxes (Bq)
 ~ Nest weight (N) + Site (S) + N:S

Contamination Levels in Nest-boxes

IbarakiTokyo

EstimateNest weight8.50 *Site239.0N:S-4.86 ** coefficient is significant

Nest contamination was positively related to nest weight.

PREDICTIONS

Level of contamination in nest-boxes would be greater in Ibaraki compared with Tokyo. (2) Level of contamination in nest-boxes would be greater in 2011 compared with 2012. (3) Level of contamination in nest-boxes would be positively related to nest weight. by Geiger Counter by Germanium Detector

SUMMARY 1

- Bird species could be more highly exposed to radiation in the breeding season directly after the nuclear accident than in the later seasons.
- The amount of radioactive contamination would be positively related to nest weight.

OUTLINE

- Fukushima Nuclear Accident
- Contamination of nest material in the

Tree Sparrows in 2011 & 2012

 Comparison of contamination of nest material between Tree Sparrows and Great Tits in 2012

Great Tits

Tree Sparrows

Open-cup shape 82 g (dry weight)

Dome shape 113 g (dry weight)

STUDY SITES

Ibaraki (175 km SW) Tree Sparrow (n =10) Great Tit 3) Tokyo (222 km SW) Tree Sparrow (n = 9)Great Tit (n = 3)

METHODS

- Measured the weight of nests (g \cdot dry) after the breeding season of 2012.
- Cs concentration (Bq/kg) by Ge detector
- The amount of Cs in nest-boxes (Bq)
 - = Cs concentration (Bq/kg) * Nest weight (g)/1000

CESIUM CONCENTRATION OF NEST MATERIALS

The AMOUNT OF CESIUM IN NEST-BOXES

SUMMARY 2

Moss tend to trap Cesium than dead grasses. \rightarrow External doses to eggs and nestlings

may be higher in nests consisted of

moss than other type of materials.

FUTURE ISSUES

eggs and nestlings in

high contaminated nests

Monitor physiological factors

Nestlings of Great Tit

FUTURE ISSUES

Movement of radionuclides through bioaccumulation (e.g., Cs-134 and Cs-137)

© Wild Bird Society of Japan

ACKNOWLEDGEMENTS

This research is supported by

the J-RAPID Program of Japan Science and Technology Agency (JST).