Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

An extensive programme of experiments on transfer of radionuclides to aquatic species was conducted in the former USSR starting from the early 1950s. Only a few of these studies were made available in the English language literature or taken into account in international reviews of radionuclide behaviour in marine ecosystems. Therefore, an overview of original information on radionuclide transfer to marine biota species available from Russian language literature sources is presented here. The concentration ratio (CR) values for many radionuclides and for marine species such as: 239Pu, 106Ru and 95Zr (crustacean), 54Mn, 90Sr, 95Nb, 106Ru, 137Cs 239Pu, 241Am and natural U (molluscs), and 54Mn 54Mn, 90Sr 90Sr, 137Cs 137Cs and 144Ce 144Ce (fish) are in good agreement with those previously published, whilst for some of them, in particular, for 32P 32P and 110Ag 110Ag (crustaceans), 35S 35S (molluscs), 32P, 35S, 95Nb, and 106Ru (macroalgae) and 60Co and 239,240Pu (fish) the data presented here suggest that changes in the default CR reference values presented in recent marine reviews may be required. The data presented here are intended to supplement substantially the CR values being collated within the handbook on Wildlife Transfer Coefficients, coordinated under the IAEA EMRAS II programme.

...

Radionuclide concentrations in Australian terrestrial fauna, including indigenous kangaroos and lizards, as well as introduced sheep and water buffalo, are of interest when considering doses to human receptors and doses to the biota itself. Here, concentration ratio (CR) values for a variety of endemic and introduced Australian animals with a focus on wildlife and livestock inhabiting open rangeland are derived and reported. The CR values are based on U- and Th-series concentration data obtained from previous studies at mining sites and 241Am and 239/240Pu data from a former weapons testing site. Soil-to-muscle CR values of key natural-series radionuclides for grazing Australian kangaroo and sheep are one to two orders of magnitude higher than those of grazing cattle in North and South America, and for 210Po, 230Th, and 238U are one to two orders of magnitude higher than the ERICA tool reference values. When comparing paired kangaroo and sheep CR values, results are linearly correlated (r = 0.81) for all tissue types. However, kidney and liver CR values for kangaroo are typically higher than those of sheep, particularly for 210Pb, and 210Po, with values in kangaroo liver more than an order of magnitude higher than those in sheep liver. Concentration ratios for organs are typically higher than those for muscle including those for 241Am and 2 39239/240Pu in cooked kangaroo and rabbit samples. This study provides CR values for Australian terrestrial wildlife and livestock and suggests higher accumulation rates for select radionuclides in semi-arid Australian conditions compared with those associated with temperate conditions.

...

Soil-to-plant transfer of radionuclides can be related to plant evolutionary history (phylogeny). For some species and radionuclides the effect is significant enough to be useful in predicting Transfer Factors (TFs). Here a Residual Maximum Likelihood (REML)-based mixed model and a recent plant phylogeny are used to compile data on soil-to-plant transfer of radionuclides and to show how the phylogeny can be used to fill gaps in TFs. Using published data, generic means for TFs are used to anchor the data from REML modelling and hence predict TFs for important groups of plants. Radionuclides of Cs are used as an example. With a generic soil-to-plant TF of 0.07, TFs of 0.035 and 0.085 are predicted for monocot and eudicot gaps, respectively. Also demonstrated is how the known effects of soil conditions can be predicted across plant groups -predicted Cs TFs for gap-filling across all flowering plants are calculated for sandy loams with and without waterlogging. Predictions of TFs for Sr, Co, Cl and Ru are also given. Overall, the results show that general predictions of TFs based on phylogeny are possible --a significant contribution to gap filling for TFs.

...